Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T10:48:52.918Z Has data issue: false hasContentIssue false

Low Temperature Hydrothermal Synthesis from Dolomite or Calcite, Quartz and Kaolinite

Published online by Cambridge University Press:  01 July 2024

P. Bayliss
Affiliation:
Department of Geology, The University of Calgary, Alberta, Canada
A. A. Levinson
Affiliation:
Department of Geology, The University of Calgary, Alberta, Canada
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Dolomite or calcite, quartz and kaolinite in various proportions were reacted at 250–300°C temperatures and pressures up to 90 bars in a hydrous environment. Reactions which approached completion produced talc, calcite, montmorillonite, anorthite (both metastable hexagonal and stable triclinic polymorphs) and the rare Ca-zeolite, garronite. These reactions are applicable to diagenesis, low-grade metamorphism and hydrothermal alteration.

Résumé

Résumé

De la dolomite ou de la calcite, du quartz et de la kaolinite en différentes proportions, ont été amenés à réagir en milieu aqueux, à des températures comprises entre 250 et 300°C et à des pressions atteignant 90 bars. Les réactions qui ont été presque complètes ont produit du talc, de la calcite, de la montmorillonite, de l’anorthite (à la fois les polymorphes hexagonal métastable et triclinique stable) et une zéolite–Ca rare, la garronite. Ces réactions sont applicables à la diagenèse, au métamorphisme peu poussé et à l’altération hydrothermale.

Kurzreferat

Kurzreferat

Dolomit oder Calcit, Quarz und Kaolinit in verschiedenen Proportionen wurden bei Temperaturen von 250 bis 300°C und Drucken von bis zu 90 bars in wässrigem Medium zur Reaktion gebracht. Annähernd vollständige unter den Reaktionen ergaben Talk, Calcit, Montmorillonit, Anorthit (sowohl metastabil hexagonale und stabil triklinische Polymorphe) und den seltenen Ca-Zeolith Garronit. Diese Reaktionen gelten für Diagenese, niedrige Metamorphose und Hydrothermische Veränderung.

Резюме

Резюме

Доломит или кальцит, кварц, каолинит в различных соотношениях подвергались обработке нагреванием от 250 до 300°С и действию давления до 90 бар в водной среде. Продуктами завершенных реакций оказывались тальк, кальцит, монтмориллонит, анортит (как в виде метастабильной гексагональной, так и в виде стабильной триклинной модификации) и реже Са-цеолит (гарронит). Подобные реакции применимы к интерпретации процессов диагенеза, метаморфизма низкой ступени и гидротермального изменения.

Type
Research Article
Copyright
Copyright © 1971, The Clay Minerals Society

References

Campbell, A. S. and Fyfe, W. S. (1960). Hydroxl ion catalysis of the hydrothermal crystallization of amor phous silica; a possible high temperature pH indicator: Am. Mineral. 48, 13221347.Google Scholar
Carr, R. M. and Fyfe, W. S. (1958). Some observations on the crystallization of amorphous silica: Am. Mineral. 43, 908916.Google Scholar
Chester, R. and Hughes, M. J. (1967). A chemical technique for the separation of ferro-manganese minerals, carbonate minerals and adsorbed trace elements from pelagic sediments: Chem. Geol. 2, 249262.CrossRefGoogle Scholar
Clark, S. P. (1966). Handbook of Physical Constants: Geol. Soc. Am. Memoir 97.Google Scholar
Coombs, D. S. (1960). Lower grade minéral facies in New Zealand: Report XXI Inter. Geol. Cong. Norden 13, 339351.Google Scholar
Deer, W. A., Howie, R. A. and Zussman, J. (1962). Rock-forming Minerals Vol. 3. Wiley, New York.Google Scholar
Goldsmith, Julian R. and Ehlers, Ernest G. (1952). The stability relations of anorthite and its hexagonal polymorph in the system CaAl2Si2O8-H2O: J. Geol. 60, 386397.CrossRefGoogle Scholar
Gordon, T. M. and Greenwood, H. J. (1970). The reaction: dolomite + quartz + water $$ talc + calcite + carbon dioxide: Am. J. Sci. 268, 225242.CrossRefGoogle Scholar
Graf, D. L. (1961). Crystallographic tables for the rhombohedral carbonates; Am. Mineral. 46, 12831316.Google Scholar
Hawkins, J. W. (1969). Hydrothermal investigations of the origin of greywacke-matrix minerals in natural sediments: Geol. Soc. Am. Meeting Abst: Eugene, Oregon Part 3, 24.Google Scholar
Helgeson, H. S. (1971). Kinetics of mass transfer among silicates and aqueous solutions: Geochim. Cosmochim. Acta. In press.CrossRefGoogle Scholar
Helgeson, H. S., Brown, T. H. and Leeper, R. H. (1969). Handbook of Theoretical Activity Diagrams. Freeman, Cooper & Company, San Francisco.Google Scholar
Liou, J. G. (1970). Synthesis and stability relations of wairakite, Sаl2Si4O12 $$ N2O: Contr. Mineral. Petrol. 27, 259282.CrossRefGoogle Scholar
Levinson, A. A. and Day, J. J. (1968). Low temperature hydrothermal synthesis of montmorillonite, ammonium-micas and ammonium-zeolites: Earth Planetary Sci. Lett. 5, 5254.CrossRefGoogle Scholar
Levinson, A. A. and Vian, R. W. (1966). The hydro thermal synthesis of montmorillonite group minerals from kaolinite, quartz and various carbonates: Am. Mineral. 51, 495498.Google Scholar
Metz, P. W. and Puhan, D. (1970). Experimental investi gation of the metamorphism of siliceous domolites. 1. The equilibrium data of the reaction: 3 dolomite + 4 quartz + 1H2O $$ 1 talc — 3 calcite + 3CO2 determined for total pressures of 1000, 3000 and 5000 bars: Contr. Mineral. Petrol. 26, 302314.CrossRefGoogle Scholar
Taylor, A. M. and Roy, R. (1964). Zeolite studies IV: - Na-P zeolites and the ion-exchanged derivatives of tetragonal Na-P: Am. Mineral. 49, 656682.Google Scholar