Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-10T22:29:17.076Z Has data issue: false hasContentIssue false

Local Order of the Transition Metals for the Substitution (Co1−yCuy)2Al(OH)6Cl·nH2O (0 ⩽ y ⩽ 1) in a Copper-Aluminum-Layered Double Hydroxide-Like Phase

Published online by Cambridge University Press:  01 January 2024

Fabrice Leroux*
Affiliation:
Laboratoire des Matériaux Inorganiques, CNRS-UPRES-A no 6002, Université Blaise Pascal, 63177 Aubière cédex, France
El Mostafa Moujahid
Affiliation:
Laboratoire des Matériaux Inorganiques, CNRS-UPRES-A no 6002, Université Blaise Pascal, 63177 Aubière cédex, France
Hervé Roussel
Affiliation:
LURE, Centre Universitaire Paris Sud, Bât 209D, BP 34, 91898 Orsay cédex, France
Anne-Marie Flank
Affiliation:
LURE, Centre Universitaire Paris Sud, Bât 209D, BP 34, 91898 Orsay cédex, France
Valérie Briois
Affiliation:
LURE, Centre Universitaire Paris Sud, Bât 209D, BP 34, 91898 Orsay cédex, France
Jean-Pierre Besse
Affiliation:
Laboratoire des Matériaux Inorganiques, CNRS-UPRES-A no 6002, Université Blaise Pascal, 63177 Aubière cédex, France
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The substitution in layered double hydroxide-like phases (LDH) of composition (Co1−y2+Cuy2+)2Al3+(OH)6Cl−⋅nH2O(0⩽y⩽1) was studied by X-ray diffraction and X-ray absorption spectroscopy. It was found that the lamellar character is maintained over the entire range of the substitution. The local order for the composition {Co2Al} is typical of brucite-like sheets, whereas segregation into small domains may explain the results obtained when the percentage of Cu atoms is increased. The {Cu2Al} end-member material presents a local order around the Cu atoms closely related to the botallackite structure as present in basic layered Cu salts, with the presence of two distinct Cu-Cu distances.

Type
Research Article
Copyright
Copyright © 2002, The Clay Minerals Society

References

Aitchison, P. Ammundsen, B. Jones, D.J. Burns, G. and Rozière, J., (1999) Cobalt substitution in lithium manganate spinels: examination of local structure and lithium extration by XAFS Journal of Material Chemistry 9 31253130 10.1039/a905784f.CrossRefGoogle Scholar
Alberding, N. and Crozier, E.D., (1983) Multiple scattering and disorder in extended X-ray absorption fine structure analysis Physical Reviews B 27 33743382 10.1103/PhysRevB.27.3374.CrossRefGoogle Scholar
Alejandre, A. Medina, H. Salagre, P. Correig, X. and Sueiras, J.E., (1999) Preparation and study of Cu-Al mixed oxides via hydrotalcite-like precursors Chemistry of Materials 11 939948 10.1021/cm980500f.CrossRefGoogle Scholar
Bellotto, M. Rebours, B. Clause, O. Lynch, J. Bazin, D. and Elkaïm, E., (1996) A reexamination of hydrotalcite crystal chemistry Journal of Physical Chemistry 100 85278534 10.1021/jp960039j.CrossRefGoogle Scholar
Besserguenev, A.V. Fogg, A.M. Francis, R.J. Price, S.J. and O’Hare, D., (1997) Synthesis an structure of gibbsite intercalation compounds [LiAl2(OH)6]X X=Cl, Br, NO3 and [LiAl2(OH)6]Cl. H2O using synchrotron X-ray and neutron powder diffraction Chemistry of Materials 9 241247 10.1021/cm960316z.CrossRefGoogle Scholar
Bookin, A.S. Cherkashin, V.I. and Drits, V.A., (1993) Polytype diversity of the hydrotalcite-like minerals. II Determination of the polytypes of experimentally studied varieties Clays and Clay Minerals 41 558564 10.1346/CCMN.1993.0410505.CrossRefGoogle Scholar
Carrado, K.A. and Wasserman, S.R., (1996) Stability of Cu(II) and Fe(III) porphyrins on montmorillonite clay: an X-ray absorption study Chemistry of Materials 8 219225 10.1021/cm950330w.CrossRefGoogle Scholar
Fragnaud, P. Prouzet, E. Ouvrard, G. Mansot, J.-L. Payen, C. Brec, R. and Dexpert, H., (1993) Room temperature synthesis study of highly disordered a-Ni2P2S6 Journal of Non-crystalline Solids 160 117 10.1016/0022-3093(93)90278-6.CrossRefGoogle Scholar
Fujita, W. Awaga, K. and Yokoyama, T., (1997) EXAFS study of two dimensional hybrid nanocomposites, Cu2(OH)3(n-CmH2m+1COO) (m=0,1,7,8,9): structural modification in the inorganic layer induced by the interlayer organic molecule Inorganic Chemistry 36 196199 10.1021/ic960787n.CrossRefGoogle Scholar
Hofmeister, W. and Von Platen, H., (1992) Crystal chemistry and atomic order in brucite-related double-layer structures Crystal Review 3 329 10.1080/08893119208032964.CrossRefGoogle Scholar
Jiménez-Lopez, A. Rodriguez-Castellon, R. Olivera-Pastor, P. Maireles-Torres, P. Tomlinson, A.A.G. Jones, D.J. and Rozière, J., (1993) Layered basic copper anion exchangers: chemical characterisation and X-ray absorption study Journal of Materials Chemistry 3 303307 10.1039/JM9930300303.CrossRefGoogle Scholar
Kamath, P.V. Therese, G.H. and Gopalakrishnan, J., (1997) On the existence of hydrotalcite-like phases in the absence of trivalent cations Journal of Solid State Chemistry 128 3841 10.1006/jssc.1996.7144.CrossRefGoogle Scholar
Kloprogge, J.T. and Frost, R.L., (1999) Fourier transform infrared and Raman spectroscopic study of the local structure of Mg-, Ni-, and Co-hydrotalcites Journal of Solid State Chemistry 146 506515 10.1006/jssc.1999.8413.CrossRefGoogle Scholar
Köckerling, M. Geismar, G. Henkel, G. and Nolting, H.-F., (1997) X-ray absorption spectroscopic studies on copper-containing hydrotalcite Journal of the Chemical Society, Faraday Transactions 93 481484 10.1039/a605289d.CrossRefGoogle Scholar
Leroux, F. Piffard, Y. Ouvrard, G. Mansot, J.-L. and Guyomard, D., (1999) New amorphous mixed transition metal oxides and their Li derivatives: synthesis, characterization, and electrochemical behavior Chemistry of Materials 11 29482959 10.1021/cm991074g.CrossRefGoogle Scholar
Leroux, F. Adachi-Pagano, M. Intissar, M. Chauvière, S. Forano, C. and Besse, J.-P., (2001) Delamination and restacking of layered double hydroxides Journal of Materials Chemistry 11 105112 10.1039/b002955f.CrossRefGoogle Scholar
Leroux, F. Moujahid, E.M. Taviot-Guého, C. and Besse, J.-P., (2001) Effect of layer charge modification for Co-Al layered double hydroxides: study by X-ray absorption spectroscopy Solid State Sciences 3 8192 10.1016/S1293-2558(00)01119-5.CrossRefGoogle Scholar
Malherbe, F., Bigey, L., Forano, C., de Roy, A. and Besse, J.-P. (1999) Structural aspects and thermal properties of takovite-like layered double hydroxides pillared with chromium oxo-anions. Journal of the Chemical Society, Dalton Transactions, 38313839.CrossRefGoogle Scholar
Manceau, A. and Calas, G., (1986) Nickel-bearing clay minerals: II Intracrystalline distribution of nickel: an X-ray absorption study Clay Minerals 21 341360 10.1180/claymin.1986.021.3.07.CrossRefGoogle Scholar
McKale, A.G. Veal, B.W. Paulikas, A.P. Chan, S.-K. and Knapp, G.S., (1988) Improved ab initio calculations of amplitude and phase functions for extended X-ray absorption fine structure spectroscopy Journal of the American Chemical Society 110 37633768 10.1021/ja00220a008.CrossRefGoogle Scholar
Miyata, S., (1983) Anion-exchange properties of hydrotalcitelike compounds Clays and Clay Minerals 31 305311 10.1346/CCMN.1983.0310409.CrossRefGoogle Scholar
O’Neill, HStC, (1994) Temperature dependence of the cation distribution in CoAl2O4 spinel European Journal of Mineralogy 6 603609 10.1127/ejm/6/5/0603.CrossRefGoogle Scholar
Prévot, V. Forano, C. and Besse, J.-P., (2001) Hybrid derivatives of layered double hydroxides Applied Clay Science 18 315 10.1016/S0169-1317(00)00025-9.CrossRefGoogle Scholar
Rajamathi, M. Kamath, V. and Seshadri, R., (2000) Polymorphism in nickel hydroxide: role of interstratification Journal of Material Chemistry 10 503506 10.1039/a905651c.CrossRefGoogle Scholar
Roussel, H. Briois, V. Elkaïm, V. de Roy, A. and Besse, J.-P., (2000) Cationic order and structure of [Zn-Cr-Cl] and [Cu-Cr-Cl] layered double hydroxides: an XRD and EXAFS study Journal of Physical Chemistry B 104 59155923 10.1021/jp0000735.CrossRefGoogle Scholar
Sakharov, B.A. Lindgreen, H. Salyn, A.L. and Drits, V.A., (1999) Mixed-layer kaolinite-illite-vermiculite in North Sea shales Clay Minerals 34 333344 10.1180/000985599546136.CrossRefGoogle Scholar
Shimizu, K. Maeshima, H. Yoshida, H. Satsuma, A. and Hattori, T., (2000) Spectroscopic characterisation of Cu-Al2O3 catalysts for selective reduction of NO with propene Physical Chemistry Chemical Physics 2 24352439 10.1039/b000943l.CrossRefGoogle Scholar
Singh, B. Sherma, D.M. Gilkes, R.J. Wells, M. and Mosselmans, J.F.W., (2000) Structural chemistry of Fe, Mn and Ni in synthetic hematites as determined by extended X-ray absorption fine structure spectroscopy Clays and Clay Minerals 48 521528 10.1346/CCMN.2000.0480504.CrossRefGoogle Scholar
Thiel, J.-P. Chiang, C.K. and Poeppelmeier, K.R., (1993) Structure of LiAl2(OH)7. 2H2O Chemistry of Materials 5 297304 10.1021/cm00027a011.CrossRefGoogle Scholar
Thompson, H.A. Parks, G.A. and Brown, G.E. Jr, (1999) Ambient-temperature synthesis, evolution, and characterization of cobalt-aluminum hydrotalcite-like solids Clays and Clay Minerals 47 425438 10.1346/CCMN.1999.0470405.CrossRefGoogle Scholar
Trombetta, M. Ramis, G. Busca, G. Montanari, B. and Vaccari, A., (1997) Ammonia adsorption and oxidation on Cu/Mg/Al mixed oxide catalysts prepared via hydrotalcitetype precursors Langmuir 13 46284637 10.1021/la960673o.CrossRefGoogle Scholar
Vucelic, M. Jones, W. and Moggridge, G.D., (1997) Cation ordering in synthetic layered double hydroxides Clays and Clay Minerals 45 803813 10.1346/CCMN.1997.0450604.CrossRefGoogle Scholar
Velu, S. Sabde, D.P. Shah, N. and Sivasanker, S., (1998) New hydrotalcite-like anionic clays containing Zr4+ in the layers: synthesis and physicochemical properties Chemistry of Materials 10 34513458 10.1021/cm980185x.CrossRefGoogle Scholar