Published online by Cambridge University Press: 02 April 2024
Li-bearing smectite minerals occurring as hydrothermal alteration products of magnesium silicate minerals in skarns associated with the Moldova Nouǎ, Romania, porphyry copper deposit were examined by X-ray powder diffraction, infrared spectroscopy, and thermal and chemical analyses. Li-bearing smectite containing 0.45–0.50 Li/unit cell is common, whereas smectite containing 0.21–0.33 Li/unit cell is less common. Both materials coexist with talc and kerolite. The Li-bearing smectite minerals (b = 9.111 Å) contains semi-ordered or ordered stacking and is highly crystalline, similar to saponite. After 3-yr storage under laboratory conditions in an air-dried state (RH = 50%) or after heating for 2 hr at 100°, 200°, 300°, or 400°C, the Li-bearing smectite minerals showed charactenstics of a regular 1:1 interstratification of anhydrous and dihydrate layers. Some segregation of the anhydrous, monohydrate, and dihydrate layers was noted.
The amount of Li-for-Mg substitution was found to be close to that in hectorite, and the number of octahedral vacancies was similar to that in stevensite. This Li-bearing smectite apparently formed directly from colloidal suspensions at atmospheric temperature and pressure.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.