Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T04:54:23.214Z Has data issue: false hasContentIssue false

Kinetics of Desorption of Water, Ethanol, Ethyl Acetate, and Toluene from a Montmorillonite

Published online by Cambridge University Press:  01 January 2024

Pascal Clausen*
Affiliation:
Laboratoire de Technologie des Composites et Polymères (LTC), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
Lorenz Meier
Affiliation:
Riedtlistrasse 67, 8006 Zurich, Switzerland
Eric Hughes
Affiliation:
Nestlé Research Center, Ver-Chez-Les-Blanc, 1000 Lausanne 26, Switzerland
Christopher J. G. Plummer
Affiliation:
Laboratoire de Technologie des Composites et Polymères (LTC), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
Jan-Anders E. Månson
Affiliation:
Laboratoire de Technologie des Composites et Polymères (LTC), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Desorption processes of low-molecular-weight compounds from the surface of smectites into the gas phase determine a number of processes, e.g. those involved in drug delivery and the release of herbicides. The desorption has not been investigated thoroughly and is not well understood. The present study was undertaken in order to understand better the factors influencing these desorption mechanisms. Starting with a very pure standard (Na+-rich) montmorillonite (Kunipia-F), which was exchanged against cations with different hydration properties (Ca2+, Li+, phenyltrimethylammonium, hexyltrimethyl-ammonium), the experiments explored the rate of desorption of volatiles with different chemical functionalities (water, ethanol, ethyl acetate, and toluene). The desorption was monitored by thermogravimetry and differential scanning calorimetry under isothermal conditions, and by ramping the temperature at a constant rate. The experiments were compared with numerical calculations based on finite-element methods and with analytical models. These data point to a two-step mechanism where the desorption follows the curve of the equilibrium desorption isotherms of those molecules on the montmorillonite. The bulk-like volatiles (i.e. volatiles with release kinetics close to that of the bulk liquids) were desorbed in a first step. With a decrease in the degree of coverage of the volatile on the montmorillonite, the desorption was increasingly dominated by the strength of interaction between the volatile and the interlayer cations of the montmorillonite.

Type
Article
Copyright
Copyright © The Clay Minerals Society 2013

References

Altshuller, A.P. and Cohen, I.R., 1960 Application of diffusion cells to the production of known concentrations of gaseous hydrocarbons Analytical Chemistry 32 802810.CrossRefGoogle Scholar
Ambrose, D. and Sprake, C.H.S., 1970 Thermodynamic properties of organic oxygen compounds. XXV. Vapor pressures and normal boiling temperatures of aliphatic alcohols Journal of Chemical Thermodynamics 2 631645.CrossRefGoogle Scholar
Arnikar, H.J. Rao, T.S. and Karmarkar, K.H., 1967 Electrodeless discharge as detector in gas chromatography III. Study of inter-diffusion of gases International Journal of Electronics 22 381385.CrossRefGoogle Scholar
Arocha, M.A. Jackman, A.P. and McCoy, B.J., 1996 Adsorption kinetics of toluene on soil agglomerates: Soil as a biporous sorbent Environmental Science & Technology 30 15001507.CrossRefGoogle Scholar
Bérend, I. Cases, J.M. François, M. Uriot, J.P. Michot, L. Masion, A. and Thomas, F., 1995 Mechanism of adsorption and desorption of water vapor by homoionic montmorillonites: 2. The Li+, Na+, K+, Rb+, and Cs+-exchanged forms Clays and Clay Minerals 43 324336.CrossRefGoogle Scholar
Besley, L.M. and Bottomley, G.A., 1974 Vapour pressure of toluene from 273.15 to 298.15 K Journal of Chemical Thermodynamics 6 577580.CrossRefGoogle Scholar
Bharadwaj, R.K., 2001 Modeling the barrier properties of polymer-layered silicate nanocomposites Macromolecules 34 91899192.CrossRefGoogle Scholar
Boek, E.S., Coveney, P.V., and Skipper, N.T. (1995) Monte Carlo molecular modeling studies of hydrated Li-, Na-, and K-smectites: Understanding the role of potassium as a clay swelling inhibitor. Journal of the American Chemical Society, 117, 12608–12607.CrossRefGoogle Scholar
Bourg, I.C. Sposito, G. and Bourg, A.C.M., 2006 Tracer diffusion in compacted, water-saturated bentonite Clays and Clay Minerals 54 363374.CrossRefGoogle Scholar
Bray, H.J. and Redfern, S.A.T., 1999 Kinetics of dehydration of Ca-montmorillonite Physics and Chemistry of Minerals 26 591600.CrossRefGoogle Scholar
Bridgeman, O.C. and Aldrich, E.W., 1964 Vapor pressure tables for water Journal of Heat Transfer 86 279286.CrossRefGoogle Scholar
Cases, J.M. Bérend, I. François, M. Uriot, J.P. Michot, L.J. and Thomas, F., 1997 Mechanism of adsorption and desorption of water vapor by homoionic montmorillonite; 3. The Mg2+, Ca2+, and Ba3+ exchanged forms Clays and Clay Minerals 45 822.CrossRefGoogle Scholar
Cebula, D.J. Thomas, R.K. and White, J.W., 1981 Diffusion of water in Li-montmorillonite studied by quasielastic neutron scattering Clays and Clay Minerals 29 241248.CrossRefGoogle Scholar
Chang, F.R.C. Skipper, N.T. and Sposito, G., 1995 Computer simulation of interlayer molecular structure in sodium montmorillonite hydrates Langmuir 11 27342741.CrossRefGoogle Scholar
Chang, M.-L. Wu, S.-C. Chen, P.-J. and Cheng, S.-C., 2003 Infrared investigation of the sequestration of toluene vapor on clay minerals Environmental Toxicology and Chemistry 22 19561962.CrossRefGoogle ScholarPubMed
Clausen, P. Andreoni, W. Curioni, A. and Hughes, E., 2009 Adsorption of low-molecular-weight molecules on a dry clay surface: An ab initio study Journal of Physical Chemistry C 113 1229312300.CrossRefGoogle Scholar
Clausen, P. Signorelli, M. Schreiber, A. Hughes, E. Plummer, J.G.P. Fessas, D. Schiraldi, A. and Månson, E.J.A., 2009 Equilibrium desorption isotherms of water, ethanol, ethyl acetate, and toluene on a sodium smectite clay Journal of Thermal Analysis and Calorimetry 98 833841.CrossRefGoogle Scholar
Clausen, P. Watzke, B. Hughes, E. Plummer, J.G.P. and Månson, E.J.A., 2011 Evaporation kinetics of volatile liquids and release kinetics of water from a smectite clay: Comparison between experiments and finite element calculations International Journal of Engineering Science 49 11251140.CrossRefGoogle Scholar
Crider, W.L., 1956 The use of diffusion coefficients in the measurement of vapour pressure Journal of the American Chemical Society 78 924925.CrossRefGoogle Scholar
Duval, F.P. Porion, P. Faugere, A.-M. and Van Damme, H., 1999 Microscale and macroscale diffusion of water in colloidal gels. A pulsed field gradient and NMR imaging investigation Journal of Physical Chemistry 103 57305735.CrossRefGoogle Scholar
El-Nokaly, M.A. Piatt, D.M. and Charpentier, B.A., 1993.Polymeric Delivery Systems: Properties and ApplicationsCrossRefGoogle Scholar
Fairbanks, D.F. and Wilke, C.R., 1950 Diffusion coefficients in multicomponent gas mixtures Industrial and Engineering Chemistry 42 471475.CrossRefGoogle Scholar
Ferrage, E. Lanson, B. Sakharov, B.A. and Drits, V.A., 2005 Investigation of smectite hydration properties by modeling experimental X-ray diffraction patterns: Part I. Montmorillonite hydration properties American Mineralogist 90 13581374.CrossRefGoogle Scholar
Frezzotti, A. Gibelli, L. and Lorenzani, S., 2005.Mean field kinetic theory description of evaporation of a fluid into vacuum Physics of FluidsCrossRefGoogle Scholar
Fujii, N. Ichikawa, Y. Katsuyuki, K. Suzuki, S. and Kitayama, K., 2003 Micro-structure of bentonite clay and diffusion coefficient given by multiscale homogeneization analysis Materials Science Research International 9 117124.Google Scholar
Gilliland, E.R., 1934 Diffusion coefficients in gaseous systems Industrial and Engineering Chemistry 26 681685.CrossRefGoogle Scholar
Girard, F. Antoni, M. Faure, S. and Steinchen, A., 2006 Evaporation and marangoni driven convection in small heated water droplets Langmuir 22 1108511091.CrossRefGoogle ScholarPubMed
Grismer, M.E., 1987 Kinetics of water vapor adsorption on soils Soil Science 143 367371.CrossRefGoogle Scholar
Grismer, M.E., 1987 Vapor adsorption kinetics and vapor diffusivity Soil Science 144 15.CrossRefGoogle Scholar
Hendricks, S.B. Nelson, R.A. and Alexandre, M., 1940 Hydration mechanism of the clay mineral montmorillonite saturated with various cations Journal of the American Chemical Society 62 14571464.CrossRefGoogle Scholar
Hensen, E.J.M. and Smit, B., 2002 Why clays swell Journal of Physical Chemistry B 106 1266412667.CrossRefGoogle Scholar
Hippenmeyer, B., 1949 Die Diffusion von Wasserdampf in Wasserstoff, Stickstoff und deren Gemischen Angewandte Physik 1 549557.Google Scholar
Ibrahim, S.H. and Kuloor, N.R., 1961 Diffusion in binary gas system British Chemical Engineering 6 862863.Google Scholar
Keyes, B.R. and Silicox, G.D., 1994 Fundamental study of the thermal desorption of toluene from montmorillonite clay particles Environmental Science & Technology 28 840849.CrossRefGoogle ScholarPubMed
Kraehenbuehl, F. Stoeckli, H.F. Brunner, F. Kahr, G. and Müller-Vonmoos, M., 1987 Study of the water-bentonite-system by vapour adsorption, immersion calorimetry and X-ray techniques, I. Micropore volumes and internal surface areas, following Dubinin’s theory Clay Minerals 22 19.CrossRefGoogle Scholar
Kretschmer, C.B. and Wiebe, R., 1949 Li quid-vapor equilibrium of ethanol-toluene solutions Journal of the American Chemical Society 71 17931797.CrossRefGoogle Scholar
Landau, L.D. and Lifschitz, E.M., 1987 Fluid Mechanics 2nd Oxford, UK Pergamon Press.Google Scholar
Lugg, G.A., 1968 Diffusion coefficients of some organic and other vapors in air Analytical Chemistry 40 10721077.CrossRefGoogle Scholar
Lusti, H.R. Gusev, A.A. and Guseva, O., 2004 The influence of platelet disorientation on the barrier properties of composites: a numerical study Modelling and Simulation in Materials Science and Engineering 12 12011207.CrossRefGoogle Scholar
Malikova, N. Cadene, A. and Marry, V., 2006 Diffusion of water in clays on the microscopic scale: modeling and experiment Journal of Physical Chemistry B 110 32063214.CrossRefGoogle ScholarPubMed
Marry, V. Malikova, N. Cadène, A. Dubois, E. Durand-Vidal, A. Turq, P. Breu, J. Longeville, S. and Zanotti, J.-M., 2008 Water diffusion in a synthetic hectorite by neutron scattering—beyond the isotropic translation model Journal of Physics: Condensed Matter 20 104205104215.Google Scholar
Mato, F. and Cimavilla, J.M., 1983 Determinacion de coeficientes binarios de difusion en fase gaseosa mediante el metodo experimental de Stefan Anales De Quimica 79 445448.Google Scholar
Meier, L.P. and Kahr, G., 1999 Determination of the cation exchange capacity (CEC) of clay minerals using the complexes of copper(II) ions with triethylenetetramine and tetraethylenepentamine Clays and Clay Minerals 47 386388.CrossRefGoogle Scholar
Michot, L.J. Bihannic, I. Pelletier, M. Rinnert, E. and Robert, J.-L., 2005 Hydration and swelling of synthetic Nasaponites: Influence of layer charge American Mineralogist 90 166172.CrossRefGoogle Scholar
Morodome, S. and Kawamura, K., 2009 Swelling behavior of Na- and Ca-montmorillonite up to 150ºC by in situ X-ray diffraction experiments Clays and Clay Minerals 57 150160.CrossRefGoogle Scholar
Morrissey, F.A. and Grismer, M.E., 1999 Kinetics of volatile organic compound sorption/desorption on clay minerals Journal of Contaminant Hydrology 36 291312.CrossRefGoogle Scholar
Nagata, I. and Hasegawa, T., 1970 Gaseous interdiffusion coefficients Journal of Chemical Engineering of Japan 3 143145.CrossRefGoogle Scholar
Nakashima, Y., 2000 Effects of clay fraction and temperature on the H2O self-diffusivity in hectorite gel: A pulsed-field-gradient spin-echo nuclear magnetic resonance study Clays and Clay Minerals 48 603609.CrossRefGoogle Scholar
Nakashima, Y., 2000 Pulsed field gradient proton NMR study of the self-diffusion of H2O in montmorillonite gel: effects of temperature and water fraction American Mineralogist 85 132138.Google Scholar
Nakashima, Y., 2002 Diffusion of H2O and I- in expandable mica and montmorillonite gels: contribution of bound H2O Clays and Clay Minerals 50 110.CrossRefGoogle Scholar
Nakashima, Y., 2003 Diffusion of H2O in smectite gels: obstruction effects of bound H2O layers Clays and Clay Minerals 51 922.CrossRefGoogle Scholar
Nakashima, Y., 2006 H2O self-diffusion coefficient of water rich MX-80 bentonite gels Clay Minerals 41 659668.CrossRefGoogle Scholar
Navier, C.L.M.H., 1822 Mémoire sur les lois du mouvement des fluides Mémoires de lAcadémie des Sciences de l’Institut de France 6 389440.Google Scholar
Nelson, E.T., 1956 The measurement of vapour diffusivities in coal-gas and some common gases Journal of Applied Chemistry 6 286292.CrossRefGoogle Scholar
Norrish, K., 1954 The swelling of montmorillonite Discussions of the Faraday Society 18 120134.CrossRefGoogle Scholar
O’Connell, J.P. Gillespie, M.D. Krostek, W.D. and Prausnitz, J.M., 1969 Diffusivities of water in nonpolar gases Journal of Chemical Physics 73 20002004.CrossRefGoogle Scholar
Ochs, M. Lothenbach, B. Shibata, M. and Mikazu, Y., 2004 Thermodynamic modeling and sensitivity analysis of porewater chemistry in compacted bentonite Physics and Chemistry of the Earth 29 129136.CrossRefGoogle Scholar
Poinsignon, J. Estrade-Szwarckopf, H. Conard, J. and Dianoux, A.J., 1989 Structure and dynamics of intercalated water in clay minerals Physica B: Physics of Condensed Matter 156- 157 140144.CrossRefGoogle Scholar
Polak, J. and Mertl, I., 1965 Saturated vapour pressure of methyl acetate, ethyl acetate, n-propyl acetate, methyl propionate, and ethyl propionate Collection of Czechoslovak Chemical Communications 30 35263528.CrossRefGoogle Scholar
Polubesova, T. Rytwo, G. Nir, S. Serban, C. and Margulies, L., 1997 Adsorption of benzyltrimethylammonium and benzyltriethylammonium on montmorillonite: Experimental studies and model calculations Clays and Clay Minerals 45 834841.CrossRefGoogle Scholar
Sato, H. and Suzuki, S., 2003 Fundamental study on the effect of an orientation of clay particles on diffusion pathway in compacted bentonite Applied Clay Science 23 5160.CrossRefGoogle Scholar
Schwertz, F.A. and Brow, J.E., 1951 Diffusivity of water vapor in some common gases Journal of Chemical Physics 19 640646.CrossRefGoogle Scholar
Salles, F. Beurroies, I. Bildstein, O. Jullien, M. Raynal, J. Denoyel, R. and Van Damme, H., 2008 A calorimetric study of mesoscopic swelling and hydration sequence in solid Na-montmorillonite Applied Clay Science 39 186201.CrossRefGoogle Scholar
Shih, Y.-H. and Wu, S.-C., 2004 Kinetics of toluene sorption and desorption in Ca- and Cu-montmorillonites investigated with Fourier transform infrared spectroscopy under two different levels of humidity Environmental Toxicology and Chemistry 23 20612067.CrossRefGoogle ScholarPubMed
Siepmann, J. Ainaoui, A. Vergnaud, J.M. and Bodmeier, R., 1998 Calculation of the dimensions of drug-polymer devices based on diffusion parameters Journal of Pharmaceutical Sciences 87 827832.CrossRefGoogle ScholarPubMed
Skipper, N.T. Lock, P.A. Titiloye, J.O. and Swenson, J., 2006 The structure and dynamics of 2-dimensional fluids in swelling clays Chemical Geology 230 182196.CrossRefGoogle Scholar
Suzuki, A. Sato, H. Ishidera, T. and Fujii, N., 2004 Study on anisotropy of effective diffusion coefficient and activation energy for deuterated water in compacted sodium bentonite Journal of Contaminant Hydrology 68 2337.CrossRefGoogle Scholar
Steinberg, S. Fairley, J.P. and Kreamer, D., 1994 Slow vapor-phase desorption of toluene from several ion-exchanged monmorillonites Journal of Soil Contamination 3 249264.CrossRefGoogle Scholar
Swenson, J. Bergman, R. and Howells, W.S., 2000 Quasielastic neutron scattering of two-dimensional water in a vermiculite clay Journal of Chemical Physics 113 28732879.CrossRefGoogle Scholar
Tambach, T.J. Bohuis, P.G. Hensen, J.M. and Smit, B., 2006 Hysteresis in clay swelling induced by hydrogen bonding: accurate prediction of swelling states Langmuir 22 12231234.CrossRefGoogle ScholarPubMed
Tamura, K. Yamada, H. and Nakazawa, H., 2000 Stepwise hydration of high-quality synthetic smectite with various cations Clays and Clay Minerals 48 400404.CrossRefGoogle Scholar
Tuck, J.J. Hall, P.L. Hayes, M.H.B. Ross, D.K. and Poinsignon, J., 1984 Quasi-elastic neutron-scattering studies of intercalated molecules in charged-deficient layer silicates: part 1 Journal of the Chemical Society Faraday Transaction 1: Physical Chemistry in Condensed Phases 80 309324.CrossRefGoogle Scholar
Tuck, J.J. Hall, P.L. and Hayes, M.H.B., 1985 Quasi-elastic neutron-scattering studies of intercalated molecules in charged-deficient layer silicates: Part 2 Journal of the Chemical Society Faraday Transactions 1: Physical Chemistry in Condensed Phases 81 833846.CrossRefGoogle Scholar
Veith, S.R. Hughes, E. and Pratsinis, S.E., 2004 Restricted diffusion and release of aroma molecules from sol-gel-made porous silica particles Journal of Controlled Release 99 315327.CrossRefGoogle ScholarPubMed
Ward, C.A. and Fang, G., 1999 Expression for predicting liquid evaporation flux: statistical rate theory approach Physical Review E 59 429439.CrossRefGoogle Scholar
Zabat, M. and Van Damme, H., 2000 Evaluation of the energy barrier for dehydration of momionic (Li, Na, Cs, Mg, Ca, Ba, Alx(OH)yz+ and La)-montmorillonite by a differentiation method Clay Minerals 35 357363.CrossRefGoogle Scholar