Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-03T14:57:50.806Z Has data issue: false hasContentIssue false

Kinetics of Decomposition of Cobalt Coordination Complexes on Montmorillonite Surfaces

Published online by Cambridge University Press:  01 July 2024

J. J. Fripiat
Affiliation:
Institut Agronomique, Université de Louvain, Héverlé-Louvain, (Belgium)
J. Helsen
Affiliation:
Institut Agronomique, Université de Louvain, Héverlé-Louvain, (Belgium)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Montmorillonite may adsorb cobalt(III)hexammine and cobalt(III)chloropentammine cations, and the C.E.C. determined for these complex cations is of the order of magnitude of that obtained with ammonium. The infrared spectra of these coordination complexes adsorbed by the clay are similar to those observed for the corresponding chloride salts. However, when montmorillonite treated with these coordination complexes is dehydrated in vacuum or under moderate temperature conditions (<100°C) in a dry atmosphere, the infrared spectra are deeply modified. The complex cations decompose with NH3 evolution and ammonium formation. Cobalt(II)hydroxide is produced and ammonium cations balance the lattice electrical charge. The true decomposition rate was followed by IR absorbance of NH4 which showed that the complex decomposition followed that for the nomothetic decomposition of solid particles. The apparent activation energy of the decomposition was 20.5 and 43 kcal/mole for the CoCl(NH3)52+- and Co(NH3)68+-montmorillonite complexes respectively. An analysis of the combined chemical and IR data on the hexammine complex permitted calculation of the NH3 diffusion rate between collapsed montmorillonite sheets. When the interplanar gap approaches 1Å the diffusion coefficient is approximately 7 × 10-19 cm2/sec. In contradiction to their stability in solutions, the cobalt(III)hexammine cation is less stable than the cobalt(III)chloropentammine cation when absorbed on montmorillonite.

Type
Research Article
Copyright
Copyright © Clay Minerals Society 1966

References

Basolo, F. and Pearson, R. G. (1958) Mechanisms of Inorganic Reactions, John Wiley, New York.Google Scholar
Bjerrum, J. (1941) Metal Ammine Formation in Aqueous Solution, Haase, Copenhagen.Google Scholar
Block, H. (1959) A vibrational study of the hexamminecobalt(III) ion, Trans. Far. Soc. 55, 867–75.10.1039/tf9595500867CrossRefGoogle Scholar
Brown, G. (1961) The X-ray Identification and Crystal Structures of Clay Minerals, Mineralogical Society, London.Google Scholar
Chaussidon, J., Calvet, R., Helsen, J. and Fripiat, J. J. (1962) Catalytic decomposition of cobalt(III)hexammine cations on the surface of montmorillonite, Nature 196, 161–2.10.1038/196161a0CrossRefGoogle Scholar
Cloos, P. and Mortland, M. M. (1965) Expansion and electrical conductivity of montmorillonite in ammonia atmosphere, Clays and Clay Minerals, Proc. 13th Conf., Pergamon Press, New York (in press).Google Scholar
Delmon, B. (1961) L'allure cinétique des réactions hétérogènes. Attaque uniforme de toute la surface de l’échantillon, Rev. Inst. Franç. Pétrole 16, 1477–509.Google Scholar
Eeckman, J. P. and Laudelout, H. (1961) Chemical stability of hydrogen montmorillonite suspensions, Koll. Zeit. 178, 99107.10.1007/BF01520770CrossRefGoogle Scholar
Fripiat, J. J., Helsen, J. and Vielvoye, L. (1964) Formation de radicaux libres sur la surface des montmorillonites, Bull. Or. Franç. des Argiles 15, 310.10.3406/argil.1964.1007CrossRefGoogle Scholar
Fripiat, J. J., Jelli, A., Poncelet, G. and André, J. (1966) Thermodynamic properties of adsorbed water molecules and electrical conduction in montmorillonites and silicas, J. Phys. Chem. 69, 2185–97.Google Scholar
Helsen, J. (1966) Etude de l’échange ionique entre la montmorillonite sodique et les ions cobalt(III)hexammine et cobalt(III)chloropentammine. Capacité d’échange et sélectivité, Bull. Soc. Chim. de France (to be published).Google Scholar
Jost, W. (1960) Diffusion in Solids, Liquids and Gases, Academic Press, New York.Google Scholar
Leonard, A., Servais, A. and Fripiat, J. J. (1962) Etude de l'adsorption des amines par les montmorillonites. II. La structure des complexes, Bull. Soc. Chim. de France 625–35.Google Scholar
Mantin, I. and Glaeser, R. (1960) Private communication.Google Scholar
Morel, R. (1957) Etude expérimentale des phénomènes d’échange sur différents minéraux argileux: Thèse présentée à la Faculté des Sciences de l'Université de Paris. Annales de l'Institut National de la Recherche Agronimique (1957).Google Scholar
Mortland, M. M., Fripiat, J. J., Chaussidon, J. and Uytterhoeven, J. (1963) Interaction between ammonia and the expanding lattices of montmorillonite and vermiculite, J. Phys. Chem. 67, 248–58.CrossRefGoogle Scholar
Nakamoto, Kazuo (1963) Infrared Spectra of Inorganic and Coordination Compounds, John Wiley, New York.Google Scholar
Shimanoijchi, Tаkehiko and Nakaoawa, Ichiro (1962) Infrared spectroscopic study on the coordination bond. I, Spectrochim. Acta 18, 89100.CrossRefGoogle Scholar
W Atkins, K. O. and Jones, M. M. (1964) A kinetic study of the hydrolysis of chloropentamminecobalt(III)chloride in ethanol water mixtures, Jour. Inorg. Nucl. Chem. 26, 469–71.Google Scholar
Wendlandt, W. W. (1963) Thermal decomposition of metal complexes. III, Jour. Inorg. Nucl. Chem. 25, 545–51.Google Scholar
Wendlandt, W. W. and Bear, J. L. (1961) The thermal deaquation of some aquo-pentammine cobalt(III) complexes, Jour. Phys. Chem. 65, 1516–9.10.1021/j100905a010CrossRefGoogle Scholar
Wendlandt, W. W. and Smith, J. P. (1963) Thermal decomposition of metal complexes. V, Jour. Inorg. Nucl. Chem. 25, 843–50.Google Scholar