Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-03T14:43:48.693Z Has data issue: false hasContentIssue false

K Transfer during Burial Diagenesis in the Mahakam Delta Basin (Kalimantan, Indonesia)

Published online by Cambridge University Press:  28 February 2024

Sylvie Furlan
Affiliation:
Centre de Géochimie de la Surface, 1 rue Blessig, 67084 Strasbourg Cedex (France) Department of Geology, Kansas State University, Manhattan, Kansas 66506 (USA)
Norbert Clauer
Affiliation:
Centre de Géochimie de la Surface, 1 rue Blessig, 67084 Strasbourg Cedex (France)
Sam Chaudhuri
Affiliation:
Department of Geology, Kansas State University, Manhattan, Kansas 66506 (USA)
Frédéric Sommer
Affiliation:
Compagnie TOTAL-SA, CST de Beauplan, Route de Versailles, 78470 St Remy-lès-Cheveuse, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Progressively buried sandstones and shales of the Mahakam Delta Basin in Indonesia were studied. Mineralogical, morphological and K-Ar isotopic data were obtained for clay, mica and feldspar minerals. The data indicate that K necessary for the illitization of illite/smectite mixed-layer minerals was supplied mainly from K-feldspar alteration within the sandstones and from mica within the shales. Most of the K-feldspar alteration for both the shale and sandstone samples were observed outside the main zone of illitization, which is restricted to the upper 2000 m of sediment. The feldspar grains were altered below this depth for both lithologies. Therefore, illitization requires an open sedimentary system. This is in contrast to the illitization model for deeply buried shales of the Gulf Coast. That system is commonly assumed to be a closed K system.

Type
Research Article
Copyright
Copyright © 1996, The Clay Minerals Society

References

Ahn, J.H. and Peacor, D.C.. 1986. Transmission and analitycal electron microscopy of the smectite-to-illite transition. Clays & Clay Miner 34: 165179.Google Scholar
Altaner, S.P.. 1986. Comparison of rates of smectite illitization with rates of K-feldspar dissolution. Clays & Clay Miner 34: 608611.CrossRefGoogle Scholar
Awwiller, D.N.. 1993. Illite/smectite formation and potassium transfer during burial diagenesis of mudrocks: A study from the Texas Gulf Coast Paleocene-Eocene. J Sedim Petrol 63: 501512.Google Scholar
Aronson, J.L. and Hower, J.. 1976. Mechanism of burial metamorphism of argillaceous sediments: 2. Radiogenic argon evidence. Geol Soc Am Bull 87: 738743.2.0.CO;2>CrossRefGoogle Scholar
Boles, J.R. and Franks, S.G.. 1979. Clay diagenesis in the Wilcox sandstones of southwest Texas. Implications of smectite diagenesis on sandstone cementation. J Sedim Petrol 49: 5570.Google Scholar
Bonhomme, M., Thuizat, R., Pinault, Y., Clauer, N., Wendling, R. and Winkler, R.. 1975. Méthode de datation potassium-argon: appareillage et technique. Strasbourg: Notes Tech Inst Géol, 3: 35p.Google Scholar
Burrus, J. and Bois, M.. 1989. Régime thermique et hydrodynamique dans le delta de la Mahakam. Un shéma qualitatif. Rapport Total-CFP et IFP, RL 4575 TEP/DE/LAB.Google Scholar
Clauer, N., Cocker, J.D. and Chaudhuri, S.. 1992. Isotopic dating of diagenetic illites in reservoir sandstones: Influence of the investigator effect. In: Houseknecht, D.W., editor. Origin, Diagenesis and Petrophysics of Clay Minerals in Sandstones. Soc Econ Paleont and Mineral, Spec Publ 47: 512.CrossRefGoogle Scholar
Clauer, N. and Chaudhuri, S., editors. 1995. Clays in crustal environment: isotope dating and tracing. Heidelberg: Springer) Verlag. 358p.CrossRefGoogle Scholar
Combaz, A. and de Matherel, M.. 1978. Organic sedimentation and genesis of petroleum in Mahakam Delta, Borneo. Am Assoc Petrol Geol Bull 62: 16841695.Google Scholar
Dunoyer de Segonzac, G.. 1970. The transformation of clay minerals during diagenesis and low-grade metamorphism: A review. Sedimentology 15: 281346.CrossRefGoogle Scholar
Duval, B.C., Choppin de Janvry, G. and Loiret, B.. 1992. The Mahakam delta province: an ever-changing picture and a brighty future. 24th Offs. Techn. Conf., Houston, Texas (USA), May 4-7 1992: 393404.Google Scholar
Furlan, S.. 1994. Tranferts de matière au cours de la diagenèse d'enfouissement dans le bassin du delta de la Mahakam (Indonésie). Un nouveau concept pour le mécanisme de l'illitisation. Ph.D., Thèse Univ. Strasbourg, France. 210p.Google Scholar
Glasmann, J.R., Clark, R.A., Latter, S.R., Briedis, N.A. and Lundegard, P.D.. 1989. Diagenesis and hydrocarbon accumulation, Brent Sandstone (Jurassic), Bergen High area, North Sea. Am Assoc Petrol Geol Bull 73: 13411360.Google Scholar
Hamilton, J., Fallick, A.E., MacIntyre, R.M. and Elliot, S.. 1987. Isotopic tracing of the provenance and diagenesis of lower Brent group sands, North Sea. In: Brooks, J., Glennie, K., editors. Petroleum geology of northwest Europe. London, Graham and Trotman Ltd. 939949.Google Scholar
Hower, J., Eslinger, E., Hower, M.E. and Perry, E.A.. 1976. Mechanism of burial metamorphism of argillaceous sediments: 1. Mineralogical and chemical evidence. Geol Soc Am Bull 87: 725737.2.0.CO;2>CrossRefGoogle Scholar
Huang, W.H. and Keller, W.D.. 1970. Dissolution of rock forming minerals in organic acids. Am Min 55: 20762094.Google Scholar
Jourdan, A., Thomas, M., Brevart, O., Robson, P., Sommer, F. and Sullivan, M.. 1987. Diagenesis as the control of Brent sandstone reservoir properties in the greater Alwyn area (East Shetland basin). In: Brooks, J., Glennie, K., editors. Petroleum Geology of Northwest Europe. London: Graham and Trotman Llt. 951961.Google Scholar
Katali, J.A.. 1978. Past and present geotectonic position of Sulawesi. Tectonophysics 45: 289322.CrossRefGoogle Scholar
Land, L.S. and Milliken, K.L.. 1981. Feldspar diagenesis in the Frio Formation, Brazoria County, Texas Gulf Coast. Geology 9: 314318.2.0.CO;2>CrossRefGoogle Scholar
Lee, M., Aronson, J.L. and Savin, S.M.. 1985. K-Ar dating of gas emplacement in Rotliegendes sandstones, Netherlands. Am Assoc Petrol Geol Bull 69: 13811385.Google Scholar
Letouzey, J., Werner, P. and Marty, A.. 1990. Fault reactivation and structural inversion. Backarc and intraplate compressive deformations. Example of the Eastern Sunda Shelf (Indonesia). Tectonophysics 183: 341362.CrossRefGoogle Scholar
Liewig, N., Clauer, N. and Sommer, F.. 1987. Rb-Sr and K-Ar dating of clay diagenesis in Jurassic sandstone reservoirs, North Sea. Am Assoc Petrol Geol Bull 71: 14671474.Google Scholar
Magnier, P. and Sansu, B.. 1975. The Handil oil-field in East Kalimantan. Proceed. 4th Ann. Conv. Indonesian Petrol. Ass. Jakarta, June 1975. 121.Google Scholar
Mossmann, J.R.. 1991. K-Ar dating of authigenic illite-smectite clay material: application to complex mixtures of mixed-layer assemblages. Clay Miner 26: 189198.CrossRefGoogle Scholar
Nier, A.O.. 1950. A redetermination of the relative abundances of the isotopes of carbon, nitrogen, oxygen, argon and potassium. Phys Rev 77: 789793.CrossRefGoogle Scholar
Odin, G.S. and 35 collaborators. 1982. Interlaboratory standards for dating purposes. In: Odin, G.S., editor. Numerical dating in startigraphy. New York: Wiley & Sons. 123149.Google Scholar
Ohr, M., Halliday, A.N. and Peacor, D.R.. 1991. Sr and Nd isotopic evidence for punctuated diagenesis, Texas Gulf Coast. Eath and Planetary Sci Letters 105: 110126.CrossRefGoogle Scholar
Perry, E.A.. 1974. Diagenesis and K-Ar dating of shales and clay minerals. Geol Soc Am Bull 85: 827830.2.0.CO;2>CrossRefGoogle Scholar
Perry, E.A. and Hower, J.. 1970. Burial diagenesis in Gulf Coast pelitic sediments. Clays & Clay Miner. 18: 165177.CrossRefGoogle Scholar
Petrovic, R.. 1976. Rate control in feldspar dissolution. II—The protective effect of precipitates. Geochem Cosmochem Acta 40: 15091522.CrossRefGoogle Scholar
Powers, M.C.. 1959. Adjustment of clays to chemical changes and concept of the equivalue level. Clays & Clay Miner 6: 309326.CrossRefGoogle Scholar
Powers, M.C.. 1967. Fluid release mechanisms in compacting marine mudrocks and their importance in oil exploration. Am Assoc Petrol Geol Bull 51: 12401254.Google Scholar
Priyomarsono, S.. 1985. Contribution à l'étude géologique du Sud-Est de Bornéo (indonésie). Géologie structurale de la partie méridionale de la chaîne des Meratus. Univ Savoie: Trav Départ Sci Terre 5: 172p.Google Scholar
Rinckenbach, T.. 1988. Diagenèse minérale des sédiments pétrolifères du delta fossile de la Mahakam (Indonésie). Evolution minéralogique et isotopique des composants argileux et histoire thermique. Ph.D. Univ. Strasbourg, France. 209p.Google Scholar
Rose, R. and Hartono, P.. 1978. Geological evolution of the Tertiary Kutei-Melawi basin, Kalimantan, Indonesia. Proceed. 7th Ann. Conv. Indonesia Petrol. Ass., Jakarta, June 1978. 20p.Google Scholar
Samual, L. and Muchsin, S.. 1975. Startigraphy and sedimentation in the Kutei basin. Proceed. 4th Ann. Conv. Indonesia Petrol. Ass., Jakarta, June 1975 p 2739.Google Scholar
Vlerk van der, I.M. and Umgrove, J.H.F.. 1927. Tertiary Gigsforaminiferen van Nederlandsch Osst-Indië. Wet Meded Dienst Mijn Ned-Oost Indië 6: 131.Google Scholar
Weaver, C.E.. 1959. The clay petrology of sediments. Clays & Clay Miner 6: 154184.CrossRefGoogle Scholar
Weaver, C.E.. 1960. Possible uses of clay minerals in search of oil. Am Assoc Petrol Geol Bull 44: 15051518.Google Scholar
Weaver, C.E. and Beck, K.C.. 1971. Clay water diagenesis during burial: How mud becomes gneiss. Geol Soc Am, Spec Paper 134: 178.Google Scholar
Weber, F. and Larqué, P.. 1969. Dosage quantitatif de minéraux par diffractométrie des rayons X. Deuxième mise au point. Rap int. inst. Géol., Univ. Strasbourg. 10p.Google Scholar
Wollast, R.. 1967. Kinetics of alteration of K-feldspar in buffered solutions at low temperature. Geochem Cosmochem Acta 31: 635648.CrossRefGoogle Scholar