Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T15:59:41.508Z Has data issue: false hasContentIssue false

Isothermal measurement of heats of hydration in zeolites by simultaneous thermogravimetry and differential scanning calorimetry

Published online by Cambridge University Press:  01 January 2024

Philip S. Neuhoff*
Affiliation:
Department of Geological Sciences, University of Florida, 241 Williamson Hall, Gainesville, FL 32611-2120, USA
Jie Wang
Affiliation:
Department of Geological Sciences, University of Florida, 241 Williamson Hall, Gainesville, FL 32611-2120, USA
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A calorimetric method for determining isothermal partial and integral heats of hydration reactions (ΔH¯R,T,P${\rm{\Delta }}{\bar H_{{\rm{R,}}T,\,P}}$ and ΔH∼R,T,P${\rm{\Delta }}{\tilde H_{{\rm{R,}}T,\,P}}$, respectively) in zeolites and other mineral hydrates is presented. The method involves immersing a dehydrated sample in a humid gas stream under isothermal conditions within a thermal analysis device that records simultaneous differential scanning calorimetric (DSC) and thermogravimetric analysis (TGA) signals. Monitoring changes in sample mass (corresponding to extent of reaction progress) coincident with a quantitative measurement of heat flow allows for direct detection of ΔH¯R,T,P${\rm{\Delta }}{\bar H_{{\rm{R,}}T,\,P}}$ as a function of the extent of hydration, which can be integrated to determine ΔH∼R,T,P${\rm{\Delta }}{\tilde H_{{\rm{R,}}T,\,P}}$. In addition, it eliminates uncertainties associated with imprecise knowledge of the starting and final states of a sample during hydration. Measurement under isothermal conditions removes uncertainties associated with heat capacity effects that complicate interpretations of DSC measurements of dehydration heats conducted under traditional scanning temperature conditions. Example experiments on the zeolites natrolite, analcime and chabazite are used to illustrate strategies for quantifying ΔH¯R,T,P${\rm{\Delta }}{\bar H_{{\rm{R,}}T,\,P}}$ and ΔH∼R,T,P${\rm{\Delta }}{\tilde H_{{\rm{R,}}T,\,P}}$ and minimizing errors associated with baseline uncertainties. Results from this method agree well with previously published values determined by other calorimetric techniques and regression of phase equilibrium data. In the case of chabazite, the results allowed detailed measurements of the variation in ΔH¯R,T,P${\rm{\Delta }}{\bar H_{{\rm{R,}}T,\,P}}$ for energetically different water types encountered progressively as the sample absorbed water. This technique complements and in many cases improves the quality of thermodynamic data obtained through phase equilibrium observations and other calorimetric techniques.

Type
Research Article
Copyright
Copyright © 2007, The Clay Minerals Society

References

Alberti, A. and Vezzalini, G., (1981) A partially disordered natrolite; relationships between cell parameters and Si-Al distribution Acta Crystallographica, Section B: Structural Crystallography and Crystal Chemistry 37 781788 10.1107/S0567740881004330.CrossRefGoogle Scholar
Alberti, A. and Vezzalini, G. (1983) How the structure of natrolite is modified through the heating-induced dehydration. Neues Jahrbuch für Mineralogie Monatshefte, 135144.Google Scholar
Alberti, A. Galli, E. Vezzalini, G. Passaglia, E. and Zanazzi, P.F., (1982) Position of cations and water-molecules in hydrated chabazite — natural and Na-exchanged, Ca-exchanged, Sr-exchanged and K-exchanged chabazites Zeolites 2 303309 10.1016/S0144-2449(82)80075-4.CrossRefGoogle Scholar
Balgord, W.D. and Roy, R. (1973) Crystal chemical relationships in analcite Family. 2. Influence of temperature and pH2O on structure. Advances in Chemistry Series, 189199.Google Scholar
Barany, R. (1962) Heats and free energies of formation of some hydrated and anhydrous sodium- and calcium-aluminum silicates. U.S. Bureau of Mines Report of Investigations, no. 5900.Google Scholar
Barrer, R.M. Cram, P.J. and Gould, R.F., (1971) Heats of immersion of outgassed ion-exchanged zeolites Molecular Sieve Zeolites-II Washington, D.C American Chemical Society 105131 10.1021/ba-1971-0102.ch047.CrossRefGoogle Scholar
Baur, W.H. and Joswig, W., (1996) The phases of natrolite during dehydration and rehydration studied by single crystal X-ray diffraction methods between room temperature and 923 K Neues Jahrbuch für Mineralogie Monatshefte 1996 171187.Google Scholar
Bish, D.L. Carey, J.W., Bish, D.L. and Ming, D.W., (2001) Thermal behavior of natural zeolites Natural Zeolites: Occurrences, Properties, Applications Washington, D.C Mineralogical Society of America and the Geochemical Society 403452 10.1515/9781501509117-015.CrossRefGoogle Scholar
Bish, D.L. Carey, J.W. Vaniman, D.T. and Chipera, S.J., (2003) Stability of hydrous minerals on the Martian surface Icarus 164 96103 10.1016/S0019-1035(03)00140-4.CrossRefGoogle Scholar
Bish, D.L. Vaniman, D.T. Chipera, S.J. and Carey, J.W., (2003) The distribution of zeolites and their effects on the performance of a nuclear waste repository at Yucca Mountain, Nevada, USA American Mineralogist 88 18891902.Google Scholar
Boddenberg, B. Rakhmatkariev, G.U. Hufnagel, S. and Salimov, Z., (2002) A calorimetric and statistical mechanics study of water adsorption in zeolite NaY Physical Chemistry Chemical Physics 4 41724180 10.1039/b203088h.CrossRefGoogle Scholar
Cammenga, H.K. Eysel, W. Gmelin, E. Hemminger, W. Hohne, G.W.H. and Sarge, S.M., (1993) The temperature calibration of scanning calorimeters. 2. Calibration substances Thermochimica Acta 219 333342 10.1016/0040-6031(93)80510-H.CrossRefGoogle Scholar
Carey, J.W., (1993) The heat-capacity of hydrous cordierite above 295 K Physics and Chemistry of Minerals 19 578583 10.1007/BF00203057.CrossRefGoogle Scholar
Carey, J.W. and Bish, D.L., (1996) Equilibrium in the clinoptilolite-H2O system American Mineralogist 81 952962 10.2138/am-1996-7-817.CrossRefGoogle Scholar
Carey, J.W. and Bish, D.L., (1997) Calorimetric measurement of the enthalpy of hydration of clinoptilolite Clays and Clay Minerals 45 826833 10.1346/CCMN.1997.0450606.CrossRefGoogle Scholar
Chipera, S.J. and Bish, D.L. (1991) Rehydration behavior of natural analcime. Clay Minerals Society, 28th Annual Meeting, Program and Abstracts, Houston, Texas, p. 29.Google Scholar
Cruciani, G. and Gualtieri, A., (1999) Dehydration dynamics of analcime by in situ synchrotron powder diffraction American Mineralogist 84 112119 10.2138/am-1999-1-212.CrossRefGoogle Scholar
Drebushchak, V.A., (1999) Measurements of heat of zeolite dehydration by scanning heating Journal of Thermal Analysis and Calorimetry 58 653662 10.1023/A:1010116930852.CrossRefGoogle Scholar
Fialips, C.I. Carey, J.W. and Bish, D.L., (2005) Hydrationdehydration behavior and thermodynamics of chabazite Geochimica et Cosmochimica Acta 69 22932308 10.1016/j.gca.2004.11.007.CrossRefGoogle Scholar
Fridriksson, T. Carey, J.W. Bish, D.L. Neuhoff, P.S. and Bird, D.K., (2003) Hydrogen-bonded water in laumontite II: Experimental determination of site-specific thermodynamic properties of hydration of the W1 and W5 sites American Mineralogist 88 10601072 10.2138/am-2003-0715.CrossRefGoogle Scholar
Gatta, G.D., (1985) Direct determination of adsorption heats Thermochimica Acta 96 349363 10.1016/0040-6031(85)80074-5.CrossRefGoogle Scholar
Gmelin, E. and Sarge, S.M., (2000) Temperature, heat and heat flow rate calibration of differential scanning calorimeters Thermochimica Acta 347 913 10.1016/S0040-6031(99)00424-4.CrossRefGoogle Scholar
Gualtieri, A.F., (2000) Accuracy of XRPD QPA using the combined Rietveld-RIR method Journal of Applied Crystallography 33 267278 10.1107/S002188989901643X.CrossRefGoogle Scholar
Guliev, T.M. Isirikyan, A.A. Mirzai, D.I. and Serpinskii, V.V., (1989) Energy of rehydration of natrolite and scolecite Bulletin of the Academy of Sciences of the USSR Division of Chemical Science 37 13081310 10.1007/BF00962727.CrossRefGoogle Scholar
Hey, M.H., (1932) Studies on the zeolites. Part III. Natrolite and metanatrolite Mineralogical Magazine 23 243289 10.1180/minmag.1932.023.139.04.CrossRefGoogle Scholar
Höhne, G.W.H. Cammenga, H.K. Eysel, W. Gmelin, E. and Hemminger, W., (1990) The temperature calibration of scanning calorimeters Thermochimica Acta 160 112 10.1016/0040-6031(90)80235-Q.CrossRefGoogle Scholar
Johnson, G.K. Flotow, H.E. Ohare, P.A.G. and Wise, W.S., (1982) Thermodynamic studies of zeolites — analcime and dehydrated analcime American Mineralogist 67 736748.Google Scholar
Johnson, G.K. Tasker, I.R. Jurgens, R. and Ohare, P.A.G., (1991) Thermodynamic studies of zeolites — clinoptilolite Journal of Chemical Thermodynamics 23 475484 10.1016/S0021-9614(05)80135-1.CrossRefGoogle Scholar
Johnson, G.K. Tasker, I.R. Flotow, H.E. Ohare, P.A.G. and Wise, W.S., (1992) Thermodynamic studies of mordenite, dehydrated mordenite, and gibbsite American Mineralogist 77 8593.Google Scholar
Kasai, T. Maeda, H. Matsui, K. Kurnia, D.F. Nakayama, N. and Mizota, T., (1994) Hydration enthalpy for synthetic and cation exchanged A-type zeolites with special reference to zeolite heat pump media Mineralogical Journal 17 170180 10.2465/minerj.17.170.CrossRefGoogle Scholar
Kiseleva, I. Navrotsky, A. Belitsky, I.A. and Fursenko, B.A., (1996) Thermochemistry and phase equilibria in calcium zeolites American Mineralogist 81 658667 10.2138/am-1996-5-613.CrossRefGoogle Scholar
Kiseleva, I. Navrotsky, A. Belitsky, I.A. and Fursenko, B.A., (1996) Thermochemistry of natural potassium sodium calcium leonhardite and its cation-exchanged forms American Mineralogist 81 668675 10.2138/am-1996-5-614.CrossRefGoogle Scholar
Kiseleva, I. Ogorodova, L.P. Melchakova, L.V. Belitsky, I.A. and Fursenko, B.A., (1997) Thermochemical investigation of natural fibrous zeolites European Journal of Mineralogy 9 327332 10.1127/ejm/9/2/0327.CrossRefGoogle Scholar
Kiseleva, I. Navrotsky, A. Belitsky, I.A. and Fursenko, B.A., (2001) Thermochemical study of calcium zeolites; heulandite and stilbite American Mineralogist 86 448455 10.2138/am-2001-0408.CrossRefGoogle Scholar
Long, J.C.S. and Ewing, R.C., (2004) Yucca Mountain: Earth-science issues at a geologic repository for high-level nuclear waste Annual Review of Earth and Planetary Sciences 32 363401 10.1146/annurev.earth.32.092203.122444.CrossRefGoogle Scholar
Mazzi, F. and Galli, E., (1978) Is each analcime different? American Mineralogist 63 448460.Google Scholar
Meier, W.M., (1960) The crystal structure of natrolite Zeitschrift für Kristallographie 113 430444 10.1524/zkri.1960.113.1-6.430.CrossRefGoogle Scholar
Mizota, T. Matsui, K. Kasai, T. and Nakayama, N., (1995) Hydration enthalpies of synthetic Na-A, cation-exchanged-A and some natural zeolites for evaluating as heat exchange absorbents Thermochimica Acta 266 331341 10.1016/0040-6031(95)02442-5.CrossRefGoogle Scholar
Muller, J.C.M. Hakvoort, G. and Jansen, J.C., (1998) DSC and TG study of water adsorption and desorption on zeolite NaA — Powder and attached as layer on metal Journal of Thermal Analysis and Calorimetry 53 449466 10.1023/A:1010137307816.CrossRefGoogle Scholar
Neuhoff, P.S. and Bird, D.K., (2001) Partial dehydration of laumontite: Thermodynamic constraints and petrogenetic implications Mineralogical Magazine 65 5970 10.1180/002646101550127.CrossRefGoogle Scholar
Neuhoff, P. S. and Wang, J., (2007) Heat capacity of hydration in zeolites American Mineralogist 92 8-9 13581367 10.2138/am.2007.2537.CrossRefGoogle Scholar
Neuhoff, P.S. Fridriksson, T. and Bird, D.K., (2000) Zeolite parageneses in the North Atlantic igneous province; implications for geotectonics and groundwater quality of basaltic crust International Book Series 5 271300.Google Scholar
Neuhoff, P.S. Kroeker, S. Du, L.-S. Fridriksson, T. and Stebbins, J.F., (2002) Order/disorder in natrolite group zeolites: A 29Si and 27A1 MAS NMR study American Mineralogist 87 13071320 10.2138/am-2002-1006.CrossRefGoogle Scholar
Neuhoff, P.S. Stebbins, J.F. and Bird, D.K., (2003) Si-Al disorder and solid solutions in analcime, chabazite and wairakite American Mineralogist 88 410423 10.2138/am-2003-2-317.CrossRefGoogle Scholar
Ogorodova, L.P. Kiseleva, I.A. Melchakova, L.V. Belitskii, I.A. and Fursenko, B.A., (1996) Enthalpies of formation and dehydration of natural analcime Geochemistry International 34 980984.Google Scholar
Ogorodova, L.P. Kiseleva, I.A. Mel’chakova, L.V. and Belitskii, I.A., (2002) Thermodynamic properties of calcium and potassium chabazites Geochemistry International 40 466471.Google Scholar
Otsuka, R. Yamazaki, A. and Kato, K., (1991) Kinetics and mechanism of dehydration of natrolite and its potassium exchanged form Thermochimica Acta 181 4556 10.1016/0040-6031(91)80411-B.CrossRefGoogle Scholar
Pechar, F. Schaefer, W. and Will, G., (1983) A neutron diffraction refinement of the crystal structure of natural natrolite, Na2Al2Si3O10 · 2H2O Zeitschrift für Kristallographie 164 1924.CrossRefGoogle Scholar
Petrova, N. Mizota, T. and Fujiwara, K., (2001) Hydration heats of zeolites for evaluation of heat exchangers Journal of Thermal Analysis and Calorimetry 64 157166 10.1023/A:1011537029569.CrossRefGoogle Scholar
Pires, J. de Carvalho, M.B. Carvalho, A.P. Guil, J.M. and Perdigon-Melon, J.A., (2000) Heats of adsorption of N-hexane by thermal gravimetry with differential scanning calorimetry (TG-DSC): A tool for textural characterization of pillared clays Clays and Clay Minerals 48 385391 10.1346/CCMN.2000.0480309.CrossRefGoogle Scholar
Robie, R.A. and Hemingway, B.S. (1995) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 pascals) pressure and at higher temperatures. United States Geological Survey Bulletin, 2131, 461 pp.Google Scholar
Sabbah, R. An, X.W. Chickos, J.S. Leitao, M.L.P. Roux, M.V. and Torres, L.A., (1999) Reference materials for calorimetry and differential thermal analysis Thermochimica Acta 331 93204 10.1016/S0040-6031(99)00009-X.CrossRefGoogle Scholar
Sarge, S.M. Gmelin, E. Hohne, G.W.H. Cammenga, H.K. Hemminger, W. and Eysel, W., (1994) The caloric calibration of scanning calorimeters Thermochimica Acta 247 129168 10.1016/0040-6031(94)80118-5.CrossRefGoogle Scholar
Shim, S.H. Navrotsky, A. Gaffney, T.R. and MacDougall, J.E., (1999) Chabazite: Energetics of hydration, enthalpy of formation, and effect of cations on stability American Mineralogist 84 18701882 10.2138/am-1999-11-1214.CrossRefGoogle Scholar
Smyth, J.R., (1982) Zeolite stability constraints on radioactive-waste isolation in zeolite-bearing volcanic-rocks Journal of Geology 90 195201 10.1086/628664.CrossRefGoogle Scholar
Stolen, S. Glockner, R. and Gronvold, F., (1996) Heat capacity of the reference material synthetic sapphire (α-Al2O3) at temperatures from 298.15 K to 1000 K by adiabatic calorimetry. Increased accuracy and precision through improved instrumentation and computer control Journal of Chemical Thermodynamics 28 12631281 10.1006/jcht.1996.0113.CrossRefGoogle Scholar
Tchernev, D.I., Bish, D.L. and Ming, D.W., (2001) Natural zeolites in solar energy heating, cooling, and energy storage Natural Zeolites: Occurrences, Properties, Applications Washington, D.C Mineralogical Society of America and the Geochemical Society 589617 10.1515/9781501509117-019.CrossRefGoogle Scholar
Tingle, T.N., Neuhoff, P.S., Ostergren, J.D., Jones, R.E. and Donovan, J.J. (1996) The effect of “missing” (unanalyzed) oxygen on quantitative electron probe microanalysis of hydrous silicate and oxide minerals. Geological Society of America, 28th annual meeting, Boulder, Colorado, p. 212.Google Scholar
Valueva, G.P. and Goryainov, S.V., (1992) Chabazite during dehydration (thermochemical and Raman spectroscopy study) Russian Geology and Geophysics 33 6875.Google Scholar
van Reeuwijk, L.P., (1972) High-temperature phases of zeolites of the natrolite group American Mineralogist 57 499510.Google Scholar
van Reeuwijk, L.P. (1974) The Thermal Dehydration of Natural Zeolites. H. Veenman and Zonen B.V., Wageningen, The Netherlands, 88 pp.Google Scholar
Wilkin, R.T. and Barnes, H.L., (1998) Solubility and stability of zeolites in aqueous solution: I. Analcime, Na- and K-clinoptilolite American Mineralogist 83 746761 10.2138/am-1998-7-807.CrossRefGoogle Scholar
Wilkin, R.T. and Barnes, H.L., (1999) Thermodynamics of hydration of Na- and K-clinoptilolite to 300°C Physics and Chemistry of Minerals 26 468476 10.1007/s002690050209.CrossRefGoogle Scholar
Yang, S.Y. and Navrotsky, A., (2000) Energetics of formation and hydration of ion-exchanged zeolite Y Microporous and Mesoporous Materials 37 175186 10.1016/S1387-1811(99)00264-4.CrossRefGoogle Scholar
Yang, S.Y. Navrotsky, A. and Wilkin, R.T., (2001) Thermodynamics of ion-exchanged and natural clinoptilolite American Mineralogist 86 438447 10.2138/am-2001-0407.CrossRefGoogle Scholar