Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T13:26:14.420Z Has data issue: false hasContentIssue false

Iron Substitution in Soil and Synthetic Anatase

Published online by Cambridge University Press:  28 February 2024

U. Schwertmann
Affiliation:
Lehrstuhl für Bodenkunde, Technische Universität München, D-80350 Freising-Weihenstephan
J. Friedl
Affiliation:
Lehrstuhl für Bodenkunde, Technische Universität München, D-80350 Freising-Weihenstephan
G. Pfab
Affiliation:
Lehrstuhl für Bodenkunde, Technische Universität München, D-80350 Freising-Weihenstephan
A. U. Gehring
Affiliation:
Lehrstuhl für Bodenkunde, Technische Universität München, D-80350 Freising-Weihenstephan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

IronIII for TiIV substitution in the structure of pedogenic and synthetic anatase of up to Fe/ (Ti+Fe) 0.1 mol/mol was indicated by an increase in unit cell size as measured by XRD line shifts. Mössbauer- and electron paramagnetic resonance spectra at both, 298 K and 4.2 K supported this by the presence of signals typical for octahedrally coordinated FeIII in a diamagnetic matrix. Charge compensation was achieved by structural OH, as indicated by FTIR bands at 3360 and 960 cm−1, which were absent in pure anatase and which disappeared on heating. The weight loss on heating amounted to ca. 0.5 mol H2O/mol Fe. At 600°C structural Fe was ejected, the unit cell size decreased to that of pure anatase, and pseudobrookite, Fe2TiO5, was formed.

Type
Research Article
Copyright
Copyright © 1995, The Clay Minerals Society

References

Deer, W. A., Howie, R. A., and Zussman, J. 1962. Rock-forming minerals. Vol. 1-5. London: Longmans, Green & Co. Ltd.Google Scholar
Fitzpatrick, R. W., Roux, J. Le, and Schwertmann, U. 1978. Amorphous and crystalline titanium and iron-titanium oxides in synthetic preparations, at near ambient conditions, and in soil clays. Clays & Clay Miner. 26: 189201.Google Scholar
Gainon, D., and Lacroix, R. 1982. Electron paramagnetic resonance of Fe3+-Ion in anatase. Proc. Phys. Soc. 79: 658659.Google Scholar
Gehring, A. U., Kathrein, R., and Reller, A. 1990. Activated state in the lepidocrocite structure during thermal treatment. Naturwissenschaften 77: 177179.Google Scholar
Gurewitz, E., and Atzmony, U. 1982. Mössbauer-effect study of Fe2TiO5, an anisotropic uniaxial spin-glass. Phys. Review B, Vol. 26, No. 11: 60936098.Google Scholar
Janik, L. J., and Raupach, M. 1977. An iterative, least-squares program to separate infrared absorption spectra into their component bands. CSIRO (Austr.) Div. Soil Tech. Pap. 35: 137.Google Scholar
Köster, H. M., 1979. Die chemische Silikatanalyse. Berlin, Heidelberg, Springer, New York: 196 pp.Google Scholar
McBride, M., 1990. Electron spin resonance spectroscopy. In Instrumental Surface Analysis of Geological Material. Perry, D. L., ed. New York: VCH Publisher, 233281.Google Scholar
Mehra, O. P., and Jackson, M. L. 1960. Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clays & Clay Miner. 7: 317327.Google Scholar
Milnes, A. R., and Fitzpatrick, R. W. 1989. Titanium and zirconium minerals. In Minerals in Soil Environments, 2nd ed. Dixon, J. B., and Weed, S. B., eds. Soil Sci. Soc. Am. Book Series No. 1: 11311205.Google Scholar
Schwertmann, U., 1984. Iron oxides in some ferruginous soils of India. Clay Res. 3: 2330.Google Scholar
Schwertmann, U., and Carlson, L. 1994. Aluminum influence on iron oxides: XVII. Unit cell parameters and aluminum substitution of natural goethites. Soil Sci. Soc. Am. J. 58: 256261.Google Scholar
Schwertmann, U., Fitzpatrick, R. M., Taylor, R. M., and Lewis, D. G. 1978. The influence of aluminum on iron oxides. II: Preparation and properties of Al-substituted hematites. Clays & Clay Miner. 27: 105112.Google Scholar
Stanjek, H., and Schwertmann, U. 1992. The influence of aluminum on iron oxides. Part XVI: Hydroxyl and aluminum substitution in synthetic hematites. Clays & Clay Miner. 40: 347354.Google Scholar
Teller, R. G., Antonio, M. R., Grau, A. E., Gueguin, M., and Kostiner, E. 1990. Structural analysis of metastable pseu-dobrookite ferrous titanium oxides with neutron diffraction and Mössbauer spectroscopy. Solid State Chem. 88: 334350.Google Scholar
Thorp, J. S., Thorp, H. S., Eggleston, T. A. Egerton, and Pear-man, A. J. 1986. The distribution of iron centres in Fe-doped rutile powders. J. Mater. Sci. Lett. 5: 5456.Google Scholar
Wickman, H. H., Klein, M. P., and Shirley, D. A. 1966. Paramagnetic hyperfine structure and relaxation effects in Mössbauer spectra: 57Fe in ferrichrome A. Phys. Rev. 152 No. 1: 345357.Google Scholar
Zeese, R., Schwertmann, U., Tietz, G. F., and Jux, U. 1994. Mineralogy and stratigraphy of three deep lateritic profiles of the Jos plateau (Central Nigeria). Catena 21: 195214.Google Scholar