Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T22:32:45.087Z Has data issue: false hasContentIssue false

I.R. Spectroscopic Evidence for Interaction Between Hydronium ions and Lattice OH Groups in Montmorillonite

Published online by Cambridge University Press:  01 July 2024

J. D. Russell
Affiliation:
The Macaulay Institute for Soil Research, Craigiebuckler, Aberdeen, Scotland
A. R. Fraser
Affiliation:
The Macaulay Institute for Soil Research, Craigiebuckler, Aberdeen, Scotland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

At low levels of hydration, exchangeable D+ in montmorillonite interacts with lattice OH groups and quantitatively converts AlMgOH groups to AlMgOD. Hydroxyl groups coordinated to two Al ions undergo a slower exchange, the extent of which is restricted by octahedral Fe3+ ions. The OH stretching vibration of AlMgOH groups in montmorillonite is assigned an unusually high frequency (3687 cm−1) compared with that of the same group in phengites (3602 cm−1).

Résumé

Résumé

A tous les niveaux d’hydration, le D+ interchangeable dans la montmorillonite réagit sur les groupes OH croisés et, quantitativement, transforme les groupes AlMgOH en AlMgOD. Les groupes hydroxyles coordonnés aux deux ions Al subissent un échange plus lent, dont l’étendue est restreinte par les ions octahédraux de Fe3+. La vibration tendant à OH des groupes AlMgOH dans montmorillonite a une haute fréquence inhabituelle (3687 cm−1) par comparaison avec celle du même groupe dans les phengites (3602 cm−1 ).

Kurzreferat

Kurzreferat

Auf zwei Ebenen der Hydration reagiert austauschbares D+ in Montmorillonit mit Gitter-OH Gruppen und verwandelt quantitativ AlMgOH Gruppen in AlMgOD Gruppen. Hydroxylgruppen, die mit zwei Al Ionen koordiniert sind erfahren langsameren Austausch, wobei das Ausmass desselben durch oktaedrische Fe3+ Ionen begrenzt wird.

Der OH Dehnvibration von AlMgOH Gruppen in Montmorillonit wird eine Frequenz (3687 cm−1) zugeschrieben, die im Vergleich mit der derselben Gruppe in Phengiten (3602 cm−1) ungewöhnlich hoch ist.

Резюме

Резюме

При низких степенях гидратации обменный ион D+ в монтмориллоните взаимодействует с группами ОН, входящими в кристаллическую решетку, и количественно переводит группы А1МgОН в А1МgOD. Гидроксильные группы, координированные двумя ионами А1, подвергаются более медленному обмену, степень которого ограничена октаэдрическими ионами Fе3+.

Деформационные колебания ОН в группах АlМgОН в монтмориллоните имеют необычно высокую частоту (3687 см−1) по сравнению с частотой колебания этих групп в фенгитах (3602 см−1).

Type
Research Article
Copyright
Copyright © 1971, The Clay Minerals Society

References

Ahlrichs, J. L. (1968) Hydroxyl stretching frequencies of synthetic Ni-, Al-, and Mg-hydroxy interlayers in expanding clays: Clays and Clay Minerals 16, 6372.CrossRefGoogle Scholar
Anderson, D. M. and Reynolds, R. C. (1967) Umiat bentonite; an unusual montmorillonite from Umiat, Alaska: Am. Mineralogist 51, 14431456.Google Scholar
Angeli, C. L. and Schafïer, P. C. (1965) Infrared spectrosopic investigations of zeolites and adsorbed molecules: J. Phys. Chem. 69, 34633470.CrossRefGoogle Scholar
Barshad, I. (1969) Preparation of E-saturated montmorillonites: Soil Sci. 108, 3842.CrossRefGoogle Scholar
Falk, M. and Giguère, P. A. (1957) Infrared spectrum of the H3O+ ion in aqueous solutions: Can. J. Chem. 35, 11951204.CrossRefGoogle Scholar
Farmer, V. C. and Mortland, M. M. (1966) An infrared study of the co-ordination of pyridine and water to exchangeable cations in montmorillonite and saponite: J. Chem. Soc. A, 344351.CrossRefGoogle Scholar
Farmer, V. C., Russell, J. D., Ahlrichs, J. L. and Velde, B. (1967) Vibration du groupe hydroxyle dans les silicates en couches: Bull. Grpe Fr. Argiles 19, 510.CrossRefGoogle Scholar
Heller, L., Farmer, V. C., Mackenzie, R. C., Mitchell, B. D. and Taylor, H. F. W. (1962) The dehydroxylation and rehydroxylation of triphormic dioctahedral clay minerals: Clay Minerals Bull. 5, 5672.CrossRefGoogle Scholar
Mortland, M. M. (1966) Urea complexes with montmorillonite: an infrared absorption study: Clay Miner. 6, 143156.CrossRefGoogle Scholar
Mortland, M. M. (1968) Protonation of compounds at clay mineral surfaces: Trans. 9th Intern. Conf. Soil Sci. Adelaide. 1, 691699.Google Scholar
Parfitt, R. L. and Mortland, M. M. (1968) Ketone absorption on montmorillonite: Proc. Soil Sci. Soc. Am. 32, 355363.CrossRefGoogle Scholar
Roberson, H. E., Weir, A. H. and Woods, R. D. (1968) Morphology of particles in size-fractionated Na-montmorillonites: Clays and Clay Minerals 16. 239248.Google Scholar
Rosenqvist, I. Th. and Jorgensen, P. (1964) Bonding of hydrogen in hydrogen montmorillonite: Nature, Lond. 204, 176177.CrossRefGoogle Scholar
Russell, J. D. (1965) Infrared study of the reactions of ammonia with montmorillonite and saponite: Trans. Faraday Soc. 61, 22842294.CrossRefGoogle Scholar
Russell, J. D. and Farmer, V. C. (1964) Infared spectroscopic study of the dehydration of montmorillonite and saponite: Clay Minerals Bull. 5, 443464.CrossRefGoogle Scholar
Russell, J. D., Farmer, V. C. and Veide, B. (1970) Replacement of OH by OD in layer silicates, and identification of the vibrations of these groups in infrared spectra: Mineral. Mag. 37. 869879.CrossRefGoogle Scholar
Tahoun, S. and Mortland, M. M. (1966) Complexes of montmorillonite with primary, secondary, and tertiary amides—I. Protonation of amides on the surface of montmorillonite: Soil Sci. 102, 248254.CrossRefGoogle Scholar
Zundel, G. and Metzger, H. (1968) Energy bands of tunneling excess protons in liquid acids. I.R. spectroscopic study of the nature of H5O2+ groups: Z. Phys. Chem. Frankf. Ausge. 58. 225245.Google Scholar