Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-09T16:06:45.469Z Has data issue: false hasContentIssue false

The I.R. Spectra of Lysine Adsorbed on Several Cation-Substituted Montmorillonites

Published online by Cambridge University Press:  01 July 2024

Sung Do Jang
Affiliation:
Division of Ceramic Engineering and Science, State University of New York College of Ceramics, Alfred University, Alfred, New York 14802, U.S.A.
Robert A. Condrate Sr.
Affiliation:
Division of Ceramic Engineering and Science, State University of New York College of Ceramics, Alfred University, Alfred, New York 14802, U.S.A.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The i.r. spectra (4000-1200 cm-1) are obtained for several cation-substituted-montmonl-lonite-lysine complexes that were prepared at their natural pH’s. Analyses of the spectra of copper-, cobalt-, nickel- and zinc-montmorillonite films indicate that bidentate chelate complexes which contain protonated ∈-amino-groups are present in the interlamellar spaces. Investigation of the spectra of the hydrogen-, calcium- and natural-montmorillonite films indicates that the dominant adsorbed species for these complexes is a lysine cation in which both the α- and the ɛ-amino-groups are protonated while the carboxyl group is ionized.

Résumé

Résumé

Les spectres infrarouges (4000–1200 cm−1) ont été obtenus pour plusieurs complexes montmorillonite à cation échangé-lysine, préparés à leurs pH naturels. L’analyse des spectres de films de montmorillonite saturée par le cuivre, le cobalt, le nickel et le zinc, indique que des complexes chélates bidentates contenant des groupes ∊ amino protonés sont présents dans les espaces interlamellaires. L’étude des spectres de films de montmorillonite naturelle ou saturée par l’hydrogène et le calcium, indique que l’espèce adsorbée dominante darts ces complexes est un cation lysine dans lequel les groupes α et ∊ aminés sont protonés à la fois, tandis que le groupe carboxyle est ionisé.

Kurzreferat

Kurzreferat

Für mehrere kationisch substituierte Montmorillonit-Lysin Komplexe, die bei ihren natürlichen pH-Werten bereitet wurden, werden die Ultrarotspektren (4000–1200 cm−1) erhalten. Analysen der Spektren von Kupfer-, Kobalt-, Nickel- und Zink-Montmorillonit Filmen zeigen an, dass in den interlamellaren Zwischenräumen zweifach gezackte Chelatkomplexe gegenwärtig sind, die protonierte ∊-Aminogruppen enthalten. Die Untersuchung der Spektren der Wasserstoff-, Calcium- und natürlichen-Montmorillonit Filme deutet darauf hin, dass die überwiegend adsorbierte Sorte dieser Komplexe ein Lysinkation ist, in welchem die α und die ∊-Aminogruppen protonisiert sind, während die Carboxylgruppe ionisiert ist.

Резюме

Резюме

Для ряда катион-замещенных комплексов монтмориллонит-лизина, приготовленных при естественных значениях pH, получены инфракрасные спектры в области 4000-1200 см-1. Aнализ спектров пленок Сu-, Со-, Ni- и Zn-монтмориллонита показывает, что в межслоевом пространстве изученных образцов присутствуют бидентатные хелатные комплексы, содержащие протонированные e-аминогруппы. Исследование спектров пленок H-, Ca- и природ-ных монтмориллонитов показывает, что преобладающей адсорбированной компонентой в этих комплексах являются катионы лизина, в которых как α-, так и ε-аминогруппы являются протонированными, тогда как карбоксильная группа ионизирована.

Type
Research Article
Copyright
Copyright © 1972, The Clay Minerals Society

Footnotes

*

Presented in part at the 161st National Meeting of the American Chemical Society, Los Angeles, California, March 1971. Submitted by Sung Do lang to the Faculty of the College of Ceramics at Alfred University, in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Ceramics.

References

Cloos, P., Calicis, B., Fripiat, J. J. and Makay, K., (1966) Adsorption of Amino-Acids and Peptides by Mont-morillonite. II. Identification of Adsorbed Species and Decay Products by Infrared Spectroscopy Proc. of International Clay Conf. 1 233245.Google Scholar
Condrate, R. A. and Nakamoto, K., (1965) Infrared spectra and normal coordinate analysis of metal glycino complexes J. Chem. Phys. 42 25902598.CrossRefGoogle ScholarPubMed
Jang, S. D., (1971) The Infrared Spectra of Some Amino Acids Adsorbed on Montmorillonites. .Google Scholar
Jang, S. D. and Condrate, R. A., (1972) The infrared spectra of α-alanine adsorbed on Cu-Montmorillonite Appl. Spectroscopy .CrossRefGoogle Scholar
Kieft, J. A. and Nakamoto, K., (1967) Infrared spectra of some platinum (II) glycine complexes J. Inorg. Chem. 29 25612568.Google Scholar
Nakamoto, K., Morimoto, Y. and Martell, A. E., (1961) Infrared spectra of aqueous solutions — I. Metal chelate compounds of amino acids J. Am. Chem. Soc. 83 45284532.CrossRefGoogle Scholar
Parker, F. S., (1961) Infrared spectra of vitamins, a Schiff base, and an amino acid chelate in water Appl. Spectroscopy 4 9699.CrossRefGoogle Scholar
Watt, G. W. and Knifton, J., (1967) Deprotonation of glycine and ß-alanine complexes of nickel (II) Inorg. Chem. 6 1010–114.CrossRefGoogle Scholar