Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T15:43:55.505Z Has data issue: false hasContentIssue false

Ion Exchange and Intersalation Reactions of Hectorite with Tris-Bipyridyl Metal Complexes

Published online by Cambridge University Press:  01 July 2024

Mary Frances Traynor F.S.E.
Affiliation:
Departments of Crop and Soil Science and Chemistry, Michigan State University, East Lansing, Michigan 48823
M. M. Mortland
Affiliation:
Departments of Crop and Soil Science and Chemistry, Michigan State University, East Lansing, Michigan 48823
T. J. Pinnavaia
Affiliation:
Departments of Crop and Soil Science and Chemistry, Michigan State University, East Lansing, Michigan 48823
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The binding of tris-bipyridyl metal complexes of the type M(bp)32+ (M = Fe2+, Cu2+, Ru2+) to hectorite surfaces is shown to occur by two mechanisms. (1) replacement of Na+ ions in the native mineral by cation exchange up to its cation exchange capacity and (2) intersalation of excess salt beyond the exchange capacity. In the cation exchange mechanism, the binding of metal complex is strongly favored over Na+. The intersalation reactions are dependent on the nature of the counter-anion: SO42-, Br- > CIO4, Cl. The homoionic M(bp)32+-hectorites, which exhibit rational 18 Å X-ray reflections, have been characterized with regard to their BET surface areas, water adsorption isotherms, types of water present, selected reactions in the intercalated state, and orientation of the complex ions in the interlayer regions. Mixed Fe(bp)32+, Na+-hectorites have also been examined and the results suggest segregation of the two ions between interlayers or within interlayers. Solid state intersalated phases have been isolated with 18 Å and 29.5 Å spacings. In general, surface areas of the intersalated phases are low, but the 18 Å phase derived from [Fe(bp)3]SO4 adsorption shows a high surface area, which even exceeds the surface area of homoionic Fe(bp)32+-hectorite.

Резюме

Резюме

Показано,что связывание трех-бипиридилового металлического комплекса типа M(bp)32+(M=Fe2+,Cu2+,Ru2+)c поверхностями гекторита происходит двумя путями: 1)замещением ионов Na+ в естественном минерале в результате катионного обмена до его возможного предела 2)внедрением избыточной соли за возможный предел обмена. При катионном обмене связывание металлического комплекса значительно сильнее,чем Na+. Реакции внедрения соли зависят от природы противо-аниона: SO42−, Br > ClO4, Cl. Гомоионные M(bp)32+-гекториты, которым присущи рациональные отражения рентгеновских лучей 18Å,характеризуются в соответствии с их поверхностными зонами,определенными методом BET,изотермами адсорбции воды,типами присутствующей воды,избранными реакциями в интеркалированном состоянии,ориентацией сложных ионов в промежутках между слоями. Были исследованы также смешанные Fe(bp)32+,Na+-гeктopиты и установлено,что кулонное связывание сложного катиона предпочитается в промежутках между слоями с наибольшей плотностью заряда. Были изолированы интерсолированные фазы в твердом состоянии с промежутками 18Å и 29.5Å. В целом,поверхностные зоны интерсалированных фаз являются низкими,но фаза 18а,полученная в результате адсорбции [Fe(bp)3]SO4, доказывает более значительную поверхностную зону по сравнению с поверхностной зоной гомоион-ного Fe(bp)32+-гекторита.

Kurzreferat

Kurzreferat

Die Bindung von tris-bipyridyl Metallkomplexen vom Typ M(bp)32+(M= Fe2+, Cu2+, Ru2+) an Hektoritoberflächen befolgt zwei Mechanismen:(1) Auswechslung von Na+ Kationen im natürlichen Mineral durch Kationenaustausch bis zu seiner Kationenaustauschkapazität un. (2) Intersalation von über-schügBigem Salz über die Austauschkapazität hinaus. In dem Kationenaustausch-mechanismus wird die Bindung von Metallkomplexen dem Natrium vorgezogen. Die Intersalationsreaktionen hängen von der Natur der Anionen ab: SO42−, Br > ClO4, Cl. Die homoionischen M(bp)32+ Hektoriten, die rationale 18 Å Röntgen-reflektionen besitzen, wurden durch ihre BET-Flächen, Wasseradsorptionsisothermen, Arten von Wasser anwesend und durch ausgewählte Reaktionen im ein-gelagerten Zustand und Orientierung von komplexen Ionen in den Zwischen-schichtgebieten, charakterisiert. Gemischte Fe(bp)23+ Na- Hektoriten wurden auch untersucht und die Resultate zeigen,dagB coulombische Bindung von komplexen Kationen in Zwischenschichten mit der höchsten Ladungsdichte bevorzugt ist. Feste,intersalierte Phasen mit 18 Å und 29,5 Å Abständen sind isoliert worden. Im allgemeinen sind die Flächen der intersalierten Phasen klein aber die 18 Å Phase, die von der [Fe(bp)3] SO4 Adsorption herstammt, zeigt eine Fläche, die über die Fläche von homoionischem Fe(bp)32+ - Hektorit hinausgeht.

Résumé

Résumé

La liaison de complexes métalliques de tris-bipyridyl du type M(bp)32+ (M=Fe2+,Cu2+,Ru2+) à des surfaces d'hectorite se passe par l'intermédiaire de 2 mécanismes:(1) remplacement par échange de cations des ions Na+ d'un minéral jusqu’à sa capacité d’échange de cations e. (2) intersalation du sel en excès au-delà de la capacité d’échange de cations. Dans le mécanisme d’échange de cations, la liaison du complexe métallique se passe préferentiellement aux dépens de Na+. Les réactions d'intersalation dépendent de la nature du contre-anion: SO42−, Br > ClO4, Cl-. Les hectorites homoioniques M(bp)32+,qui montrent des réflexions rationelles de rayons-X de 18 Å,ont été caractérisées quant à leurs aires de surface BET, les isothermes d'adsorption,les types d'eau présents, les réactions sélectionées dans l’état intercalé, et l'orientation des ions complexes dans les régions interfeuillet. Des hectorites mélangées Fe(bp)32+ Na+ ont aussi été examinées et les résultats suggèrent la ségrégation des 2 ions entre les couches interfeuillet ou au sein même des couches interfeullet. Des phases intersalées à l’état solide ont été isolées avec des périodicités de 18 A à 29.5 Å. En général, les aires de surface des phases interslées sont petites, mais la phase 18 A dérivée de l'adsorption [Fe(bp)3]SO4 montre une large aire de surface, plus grande même que celle de l'hectorite homoionique: Fe(bp)32+.

Type
Research Article
Copyright
Copyright © 1978, The Clay Minerals Society

Footnotes

*

Journal Article No. 8450 Michigan Agricultural Experiment Station. This work was partially supported by National Science Foundation grant No. CHE76-80370-A01.

References

Berkheiser, V. E. and Mortland, M. M. (1977) Hectorite complexes with Cu(II) and Fe(II)-1,10-phenanthroline chelates: Clays & Clay Minerals 25, 105112.CrossRefGoogle Scholar
Burstall, F. H. (1936) Optical activity dependent on coordinated bivalent ruthenium: J. Chem. Soc., 173.Google Scholar
Burstall, F. H. and Nyholm, R. S. (1952) Studies in co-ordination chemistry. Part XIII. Magnetic moments and bond types of transition-metal complexes: J. Chem. Soc., 35703579.Google Scholar
Clementz, D. M., Pinnavaia, T. J. and Mortland, M. M. (1973) Stereochemistry of hydrated copper(II) ions on the interlamellar surfaces of layer silicates. An electron spin resonance study: J. Phys. Chem. 77(2), 196200.CrossRefGoogle Scholar
Farmer, V. C. and Russell, J. D. (1967) Infrared absorption spectrometry in clay studies: Clays & Clay Minerals, Proc. 15th Nat. Conf. pp. 121142.Google Scholar
Greenland, D. J. and Quirk, J. P. (1962) Adsorption of 1-n-alkyl pyridinium bromides by montmorillonite: Clays & Clay Minerals 9, 484499.CrossRefGoogle Scholar
Hathaway, B. J., Hodgson, P. G. and Power, P. C. (1974) Single-crystal electronic and electron spin resonance spectra of three tris-chelate copper(II) complexes: J. Inorg. Chem. 13(8), 20092013.CrossRefGoogle Scholar
Inskeep, R. G. (1962) Infrared spectra of metal complex ions below 600 cm–1—I. The spectra of the tris complexes of 1,10 phenanthroline and 2,2′-bipyridine with the transition metals iron(II) through zinc(II): J. Inorg. Nucl. Chem. 24, 763776.CrossRefGoogle Scholar
Jensen, A., Basolo, F. and Neuman, H. M. (1958) Mechanism of racemization of complex ions. IV. Effect of added large ions upon the rates of dissociation and racemization of tris-(1,10-phenanthroline) iron(II) ion: J. Am. Chem. Soc. 80, 23542358.CrossRefGoogle Scholar
Lagaly, G. and Weiss, A. (1975) The layer charge of smectite layer silicates: Proc. Int. Clay Conf. 157159.Google Scholar
Noack, M., Kokoszka, G. F. and Gordon, G. (1971) Dynamic Jahn-Teller effects and magnetic anisotropies in aqueous solutions and water-ethanol glasses of copper(II) solvates and complexes with 2,2′-dipyridine: J. Chem. Phys. 54(3), 13421350.CrossRefGoogle Scholar
Percy, G. C. and Thorton, D. A. (1971) Crystal field aspects of vibrational spectra IV. The effect of d-orbital splitting on the infrared spectra of transition metal (II) complexes of cis-chelating bidentate ligands: J. Mol. Struct. 10, 3948.CrossRefGoogle Scholar
Schilt, A. A. and Taylor, R. C. (1959) Infrared spectra of 1,10-phenanthroline metal complexes in the rock salt region below 2000 cm–1: J. Inorg. Nucl. Chem. 9, 211221.CrossRefGoogle Scholar
Sprintschnik, G., Sprintschnik, H. W., Kirsch, P. P. and Whitten, D. G. (1976) Photochemical cleavage of water: A system for solar energy conversion using monolayer-bound transition metal complexes: J. Am. Chem. Soc. 98, 23372338.CrossRefGoogle Scholar
Sprintschnik, G., Sprintschnik, H. W., Kirsch, P. P. and Whitten, D. G. (1977) Preparation and photochemical reactivity of surfactant ruthenium(II) complexes in monolayer assemblies and at water-solid interfaces: J. Am. Chem. Soc. 99, 49474954.CrossRefGoogle Scholar
Thielman, V. J., and McAtee, J. L. Jr. (1975) The relationship between structural properties of metal-tris ethylenediamine montmorillonite and their behavior as gas chromatographic packing materials: Clays & Clay Minerals 23, 173180.CrossRefGoogle Scholar
Velghe, F., Schoonheydt, R. A., Uytterhoeven, J. B., Peigneur, P. and Lunsford, J. H. (1977) Spectroscopic characterization and thermal stability of copper(II) ethylenediamine complexes on solid surfaces. 2. montmorillonite: J. Phys. Chem. 81, 11871194.CrossRefGoogle Scholar