Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-22T22:08:47.620Z Has data issue: false hasContentIssue false

Investigation of the Clay Fraction (<2 µm) of the Clay Minerals Society Reference Clays

Published online by Cambridge University Press:  01 January 2024

Christoph Vogt*
Affiliation:
FB Geowissenschaften/Geo Sciences, Universität Bremen, Post Box 330440, D-28334 Bremen, Germany
Jörn Lauterjung
Affiliation:
GeoForschungsZentrum Potsdam, Telegrafenberg, D-14473 Potsdam, Germany
Reinhard X. Fischer
Affiliation:
FB Geowissenschaften/Geo Sciences, Universität Bremen, Post Box 330440, D-28334 Bremen, Germany
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We studied a set of 15 reference clays from The Clay Minerals Society (CMS) Source Clays repository. Our aim was to use them as reference materials in our version of the QUAX mineral database. The QUAX software (Quantitative Phase-Analysis with X-ray Powder Diffraction) has been used successfully at the KTB site (German Continental Deep Drillling) to determine mineral assemblages quickly, in an automatic fashion, on a large number of samples (∼40,000). It was also applied to Quaternary marine sediments of the Japan Sea. Our current research focuses on marine and lacrustrine sediments from the Arctic Ocean and Siberia.

QUAX is a full-pattern method using a reference materials database. The quality of a particular quantification depends on the availability of the relevant mineral phases in the database. Our aim is to extend and improve the database continuously with new data from our current projects, particularly from clay and feldspar minerals.

A reference material in the QUAX software must be monomineralic. Before X-ray diffraction (XRD) patterns of CMS clays could be added to the database, quantification of any impurities was necessary. After measuring the bulk material by XRD, the <2 µm fraction was separated because we assumed it would contain the smallest amount of impurities. Here we present grain-size data, XRD data and X-ray fluorescence (XRF) data for this clay-sized fraction. The results of chemical and mineralogical preparation techniques and (elemental) analysis methods were combined. For XRD, random and oriented clay-aggregate samples as well as pressed pellets for QUAX analysis were prepared. Semi-quantitative clay mineral determinations were run for comparison.

Type
Research Article
Copyright
Copyright © 2002, The Clay Minerals Society

References

Bergmann, J. and Kleeberg, R., (1998) Rietveld analysis of disordered layer silicates Materials Science Forum 278–281 300305 10.4028/www.scientific.net/MSF.278-281.300.10.4028/www.scientific.net/MSF.278-281.300CrossRefGoogle Scholar
Biscaye, P.E., (1964) Distinction between kaolinite and chlorite in recent sediments by X-ray diffraction American Mineralogist 49 1281 1289.Google Scholar
Biscaye, P.E., (1965) Mineralogy and sedimentation of recent deep-sea clays in the Atlantic Ocean and adjacent seas and oceans Geological Society of America Bulletin 76 803832 10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2.10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2CrossRefGoogle Scholar
Chipera, S.J. and Bish, D.L., (2001) Baseline studies of the Clay Minerals Society source clays: Powder X-ray diffraction analyses Clays and Clay Minerals 49 398409 10.1346/CCMN.2001.0490507.10.1346/CCMN.2001.0490507CrossRefGoogle Scholar
Dersch, M. and Stein, R., (1994) Late Cenozoic records of eolian quartz flux in the Sea of Japan (ODP-Leg 128, Sites 798 and 799) and paleoclimate in Asia Palaeogeography, Palaeoclimatology, Palaeoecology 108 523535 10.1016/0031-0182(94)90250-X.10.1016/0031-0182(94)90250-XCrossRefGoogle Scholar
Ehrmann, W.E. Melles, M. Kuhn, G. and Grobe, H., (1992) Significance of clay minerals assemblages in the Antarctic Ocean Marine Geology 107 249273 10.1016/0025-3227(92)90075-S.10.1016/0025-3227(92)90075-SCrossRefGoogle Scholar
Emmermann, R. and Lauterjung, J., (1990) Double X-ray analysis of cuttings and rock flour: A powerful tool for rapid and reliable determination of borehole lithostratigraphy Scientific Drilling 1 269 282.Google Scholar
Groschopf, N. (1997) Die Röntgenfluoreszensanalyse-Reproduzierbarkeit der Hauptelementanalysen. http://www.uni-mainz.de/FB/Geo/Geologie/EMSRFA/RFA.html.Google Scholar
Hughes, R.E. Moore, D.M. Glass, H.D., Amonette, J.E. and Zelazny, L.W., (1994) Qualitative and quantitative analysis of clay minerals in soils Quantitative Methods in Soil Mineralogy Madison, Wisconsin Soil Science Society of America 330359 SSSA Special Publication, 35 .Google Scholar
Jasmund, K. and Lagaly, G., (1993) Tonminerale und Tone: Struktur, Eigenschaften, Anwendung und Einsatz in Industrie und Umwelt Darmstadt Steinkopf Verlag 10.1007/978-3-642-72488-6 490 pp.10.1007/978-3-642-72488-6CrossRefGoogle Scholar
Kassens, H. Bauch, H.A. Dmitrenko, I. Eicken, H. Hubberten, H.-W. Melles, M. Thiede, J. and Timokhov, L., (1999) Land-Ocean Systems in the Siberian Arctic: Dynamics and History Berlin, Heidelberg, New York Springer-Verlag 10.1007/978-3-642-60134-7 711 pp.CrossRefGoogle Scholar
Keeling, J.L. Raven, M.D. and Gates, W.P., (2000) Geology and characterization of two hy drothermal nontronites from weathered metamorphic rocks at the Uley graphite mine, South Australia Clays and Clay Minerals 48 537548 10.1346/CCMN.2000.0480506.10.1346/CCMN.2000.0480506CrossRefGoogle Scholar
Knies, J. and Stein, R., (1998) New aspects of organic carbon deposition and its paleoceanographic implications along the northern Barents Sea margin during the last 30,000 years Paleoceanography 13 384394 10.1029/98PA01501.10.1029/98PA01501CrossRefGoogle Scholar
Koster, H.M. Ehrlicher, U. Gilg, H.A. Jordan, R. Murad, E. and Onnich, K., (1999) Mineralogical and chemical characteristics of five nontronites and Fe-rich smectites Clay Minerals 34 579599 10.1180/000985599546460.10.1180/000985599546460CrossRefGoogle Scholar
Melles, M., (1991) Late Quaternary paleoglaciology and paleoceanography at the continental margin of the Southern Weddell Sea Reports on Polar Research 81 1190 in German with English Abstract.Google Scholar
Moore, D.M. and Reynolds, R.C. Jr., (1997) X-ray Diffraction and the Identification and Analysis of Clay Minerals 2nd Oxford, UK Oxford University Press 378 pp.Google Scholar
Müller, G., von Engelhardt, W. Füchtbauer, H. and Müller, G., (1967) Methods in sedimentary petrology Sedimentary Petrology, Volume 1 Stuttgart, Germany Schweizerbart 1283 283 pp.Google Scholar
Newman, A.C.D. Brown, G. and Newman, A.C.D., (1987) The chemical constitution of clays Chemistry of Clays and Clay Minerals London. Longman Scientific & Technical, Harlow, Essex, UK Mineralogical Society 1 129.Google Scholar
Nørgaard-Pedersen, N. Spielhagen, R.F. Thiede, J. and Kassens, H., (1998) Central Arctic surface ocean environment during the past 80,000 years Paleoceanography 13 193204 10.1029/97PA03409.10.1029/97PA03409CrossRefGoogle Scholar
Ottner, F. Gier, S. Kuderna, M. and Schwaighofer, B., (2000) Results of an inter-laboratory comparison of methods for quantitative clay analysis Applied Clay Scienc 17 223243 10.1016/S0169-1317(00)00015-6.10.1016/S0169-1317(00)00015-6CrossRefGoogle Scholar
Petschick, R. Kuhn, G. and Gingele, F.X., (1996) Clay mineral distribution in surface sediments of the South Atlantic: Sources, transport, and relation to oceanography Marine Geology 130 203229 10.1016/0025-3227(95)00148-4.10.1016/0025-3227(95)00148-4CrossRefGoogle Scholar
Plançon, A. and Drits, V.A., (2000) Phase analysis of clays using an expert system and calculation programs for X-ray diffraction by two- and three-component mixed-layer minerals Clays and Clay Minerals 48 5762 10.1346/CCMN.2000.0480107.CrossRefGoogle Scholar
Reynolds, R.C. Jr. and Walker, J.R., (1993) Computer Applications to X-ray Powder Diffraction Analysis of Clay Minerals Boulder, Colorado The Clay Minerals Society 10.1346/CMS-WLS-5 CMS Workshop Lectures, Volume 5 .10.1346/CMS-WLS-5CrossRefGoogle Scholar
Schubert, C.J. and Calvert, S.E., (2001) Nitrogen and carbon isotopic composition of marine and terrestrial organic matter in Arctic Ocean sediments: implications for nutrient utilization and organic matter composition Deep-Sea Research Part I: Oceanographic Research Papers 48 789810 10.1016/S0967-0637(00)00069-8.10.1016/S0967-0637(00)00069-8CrossRefGoogle Scholar
Stax, R., (1994) Zyklische Sedimentation von organischem Kohlenstoff in der Japan See: Anzeiger für Änderungen von Paläoozeanographie und Paläoklima im Spätkänozoikum Bremen, Germany Universitat Bremen Berichte, FB Geowissenschaften, 47 .Google Scholar
Stein, R. Ivanov, G. Levitan, M. and Fahl, K., (1996) Surface-Sediment Composition and Sedimentary Processes in the central Arctic Ocean and along the Eurasian Continental Margin Bremerhaven, Germany AWI Reports on Polar Research, 212 .Google Scholar
Van Olphen, H. and Fripiat, J.J., (1973) Data Handbook for Clay Materials and other Non-Metallic Minerals London Pergamon Press 342 pp.Google Scholar
Vogt, C., (1996) Bulk mineralogy in surface sediments from the eastern central Arctic Ocean Surface-sediment Composition and Sedimentary Processes in the Central Arctic Ocean and Along the Eurasian Continental Margin 212 159171 In.Google Scholar
Vogt, C., (1997) Regional and temporal variations of mineral assemblages in Arctic Ocean sediments as climatic indicator during glacial/interglacial changes Reports on Polar Research 251 1309 in German with English Abstract.Google Scholar
Vogt, C. Lauterjung, J. and Fischer, R.X., (2000) QUAX auf dem Prüfstand — lassen sich Tonminerale in der Gesamtfraktion genau genug bestimmen? Berichte der Deutschen Mineralogischen Gesellschaft, Beihefte zum European Journal of Mineralogy 12 225.Google Scholar
Vogt, C. Lauterjung, J. and Fischer, R.X., (2001) QUAX — a workhorse for the Quantitative Phase Analysis of clay-rich sediments. Berichte der Deuts chen Mineralogischen Ges ells chaft, B eihefte zum European Journal of Mineralogy 13 192.Google Scholar
Weaver, C.E. Pollard, L.D., Weaver, C.E. and Pollard, L.D., (1973) Smectite The Chemistry of Clay Minerals Amsterdam/London/New York Elsevier 5586 Developments in Sedimentology, 15 .Google Scholar