Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-07T11:24:42.839Z Has data issue: false hasContentIssue false

The Interlayer Structure of La-Vermiculite

Published online by Cambridge University Press:  28 February 2024

Phillip G. Slade
Affiliation:
CSIRO Land and Water, Glen Osmond, South Australia 5064
Peter G. Self
Affiliation:
Ian Wark Research Institute, University of South Australia, The Levels, South Australia 5095
James P. Quirk
Affiliation:
Department of Soil Science and Plant Nutrition, University of Western Australia, Nedlands, Western Australia 6009
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The structure of the interlayer cation-water system in La-vermiculite with a unit cell of a = 5.33(5), b = 9.18(6), c = 15.13(9) Å and β = 96.82(7)° has been determined in space group C2/m. Under ambient conditions, the interlayer La cations are distributed on a 3a × b superlattice which disappears on dehydration but returns on rehydration. The basal spacing does not change during the dehydration/rehydration process. The character of the superlattice spots indicate that the cation-water system, at ambient conditions, is ordered over relatively large domains. The La cations are surrounded by 8 neighboring water molecules in a distorted cubic arrangement. The spaces between the La-water clusters are occupied by triads of water molecules that are relatively mobile.

Type
Research Article
Copyright
Copyright © 1998, The Clay Minerals Society

References

Alcover, J.F. and Gatineau, L., 1980 Structure de l’espace interlamellaire de la vermiculite Mg bicouche Clay Miner 15 2535 10.1180/claymin.1980.015.1.03.CrossRefGoogle Scholar
Alcover, J.F. Gatineau, L. and Méring, J., 1973 Exchangeable cation distribution in nickel and magnesium vermiculite Clays Clay Miner 21 131136 10.1346/CCMN.1973.0210209.CrossRefGoogle Scholar
Baerlocher, C. Hepp, A. and Meier, W.M., 1977 DLS-76, a program for the simulation of crystal structures by geometric refinement Zürich, Switzerland Institute of Crystallography and Petrography.Google Scholar
Bernal, J.D. and Fowler, R.H., 1933 A theory of water and ionic solution with particular reference to hydrogen and hydroxyl ions J Chem Phys 1 515548 10.1063/1.1749327.CrossRefGoogle Scholar
Bonot-Courtois, C. and Jaffrezic-Renault, N., 1982 Etudes des échanges entre terres rares et cations interfoliaires de deux argiles Clay Miner 17 409420 10.1180/claymin.1982.017.4.04.CrossRefGoogle Scholar
Bruque, D. Mozas, T. and Rodriguez, A., 1980 Factors influencing retention of lanthanide ions by montmorillonite Clay Miner 15 413420 10.1180/claymin.1980.015.4.08.CrossRefGoogle Scholar
Busing, W.R., Martin, K.O. and Levy, H.A.. 1962. ORFLS, a Fortran crystallographic least-squares refinement program. Oak Ridge Natl Lab Tech Man 305. 75 p.Google Scholar
de la Calle, C., 1977 Structure des vermiculites, facteurs conditionnant les mouvements des feuillets [Ph.D. thesis] Paris Univ P et M Curie.Google Scholar
Cruickshank, D.W.J. Pilling, D.W. Bujosa, A. Lovell, F.M. and Truter, M.R., 1961 Computing methods in the phase problem Oxford Pergamon Pr.Google Scholar
Jones, D.J. Rozière, J. Olivera-Pastor, P. Rodriguiez-Castellon, E. and Jimènez-Löpeza, A., 1991 Local environment of intercalated lanthanide ions in vermiculite J Chem Soc, Faraday Trans 87 18 30773081 10.1039/FT9918703077.CrossRefGoogle Scholar
Laufer, F. Yarivc, S. and Steinberg, M., 1984 The adsorption of quadrivalent cerium by kaolinite Clay Miner 19 137149 10.1180/claymin.1984.019.2.02.CrossRefGoogle Scholar
Mathieson, A. and Walker, G.F., 1954 Crystal structure of mag-nesium-vermiculite Am Mineral 39 231255.Google Scholar
Miller, S.E. Heat, G.R. and Gonzalez, R.D., 1982 Effects of temperature on the sorption of lanthanides by montmorillonite Clays Clay Miner 30 111122 10.1346/CCMN.1982.0300205.CrossRefGoogle Scholar
Norrish, K. and Serratosa, J.M., 1973 Factors in the weathering of mica to vermiculite Proc Int Clay Conf; 1972; Madrid, Spain. Division de Ciencias, CSIC 417432.Google Scholar
Olivera-Pastor, P. Rodríguez-Castillón, E. and Rodríguez García, A., 1988 Uptake of lanthanides by vermiculite Clays Clay Miner 36 6872 10.1346/CCMN.1988.0360109.CrossRefGoogle Scholar
Pauling, L., 1960 The nature of the chemical bond New York Cornell Univ Pr 511540.Google Scholar
Shirozu, J. and Bailey, S.N., 1966 Crystal structure of a two layer Mg-vermiculite Am Mineral 52 1124.Google Scholar
Slade, P.G. Dean, C. Schultz, P.K. and Self, P.G., 1987 Crystal structure of a vermiculite-anilinium intercalate Clays Clay Miner 35 177188 10.1346/CCMN.1987.0350303.CrossRefGoogle Scholar
Slade, P.G. Schultz, P.K. and Tiekink, E.R.T., 1989 Structure of a 1, 4-diazabicyclo [2,2,2] octane-vermiculite intercalate Clays Clay Miner 37 8188 10.1346/CCMN.1989.0370110.CrossRefGoogle Scholar
Slade, P.G. and Stone, P.A., 1983 Structure of a vermiculite-aniline intercalate Clays Clay Miner 31 200206 10.1346/CCMN.1983.0310305.CrossRefGoogle Scholar
Slade, P.G. Stone, P.A. and Radoslovich, E.W., 1985 Interlayer structures of the two-layer hydrates of Na- and Ca-vermiculites Clays Clay Miner 33 5161 10.1346/CCMN.1985.0330106.CrossRefGoogle Scholar
Slade, P.G. and Quirk, J.P., 1991 The limited crystalline swelling of smectites in CaCl2, MgCl2, and LaCl3 solutions J Colloid Interface Sci 144 1826 10.1016/0021-9797(91)90233-X.CrossRefGoogle Scholar