Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T05:45:40.309Z Has data issue: false hasContentIssue false

The Interlayer Collapse During Dehydration of Synthetic Na0.7-Beidellite: A 23Na Solid-State Magic-Angle Spinning NMR Study

Published online by Cambridge University Press:  28 February 2024

J. Theo Kloprogge
Affiliation:
Department of Geochemistry, Institute for Earth Sciences, University of Utrecht, Budapestlaan 4, P.O. Box 80.021, 3508 TA Utrecht, The Netherlands
J. Ben H. Jansen
Affiliation:
Department of Geochemistry, Institute for Earth Sciences, University of Utrecht, Budapestlaan 4, P.O. Box 80.021, 3508 TA Utrecht, The Netherlands
Roelof D. Schuiling
Affiliation:
Department of Geochemistry, Institute for Earth Sciences, University of Utrecht, Budapestlaan 4, P.O. Box 80.021, 3508 TA Utrecht, The Netherlands
John W. Geus
Affiliation:
Department of Inorganic Chemistry, University of Utrecht, P.O. Box 80083, 3508 TB, Utrecht, The Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The dehydration and migration of the interlayer cation of the synthetic beidellite Na0.7Al4.7Si7.3O20-(OH)4·nH2O, were studied with solid-state 23Na and 27Al MAS-NMR, heating stage XRD, and thermogravimetric analyses (TGA, DTA). The 23Na MAS-NMR of Na-beidellite at 25°C displays a chemical shift of 0.2 ppm, which indicates a configuration comparable with that of Na+ in solution. Total dehydration proceeds reversibly in two temperature ranges. Four water molecules per Na+ are gradually removed from 25° to 85°C. As a result, the basal spacing decreases from 12.54 Å to 9.98 Å and the Na+ surrounded by the two remaining water molecules is relocated in the hexagonal cavities of the tetrahedral sheet. The chemical shift of 1.5 ppm exhibited after the first dehydration stage illustrates the increased influence of the tetrahedral sheet. The high local symmetry is maintained throughout the entire first dehydration stage. During the second dehydration, which proceeds in a narrow temperature range around 400°C, the remaining two water molecules are removed reversibly without any change of the basal spacing.

Type
Research Article
Copyright
Copyright © 1992, The Clay Minerals Society

Footnotes

Publication of the Debye Institute, University of Utrecht, The Netherlands.

References

Akitt, J. W., 1989 Multinuclear studies of aluminum compounds Progr. NMR Spectr. 21 1149 10.1016/0079-6565(89)80001-9.CrossRefGoogle Scholar
Bank, S., Bank, J. and Ellis, P. D., 1989 Solid-state 113Cd nuclear magnetic resonance study of exchanged montmorillonite J. Phys. Chem. 93 48474855 10.1021/j100349a034.CrossRefGoogle Scholar
Chu, P. J., Gerstein, B. C., Nunan, J. and Klier, K., 1987 A study by solid-state NMR of 133Cs and 1H of a hydrated and dehydrated cesium mordenite J. Phys. Chem. 91 35883592 10.1021/j100297a025.CrossRefGoogle Scholar
Engelhardt, G. and Michel, D., 1987 High-resolution Solid-state NMR of Silicates and Zeolites New York Wiley.Google Scholar
Ghose, S. and Tsang, T., 1973 Structural dependence of quadrupole coupling constant e2qQ/h for 27A1 and crystal field parameter D for Fe3+ in aluminosilicates Amer. Mineral. 58 748755.Google Scholar
Güven, N., 1988 Smectites Hydrous Phyllosilicates (Exclusive of Micas) 19 497559 10.1515/9781501508998-018.Google Scholar
Hamilton, D. L. and Henderson, C. M. B., 1968 Preparation of silicate compositions by a gelling method Mineral. Mag. 36 832838.Google Scholar
Janssen, R., Dols, P P M A Tijink, G A H Veeman, W. S., Jacobs, P. A. and van Santen, R. A., 1989 High temperature NMR of zeolites Zeolites: Facts, Figures, Future. Stud. Surf. Sci. and Catal. 49 A/B 609614.CrossRefGoogle Scholar
Janssen, R., Tijink, G A H Veeman, W. S., Maesen, T L M and van Lent, J. F., 1989 High temperature NMR study of zeolite Na-A: Detection of a phase transition J. Phys. Chem. 93 899904 10.1021/j100339a068.CrossRefGoogle Scholar
Kawano, M. and Tomita, K., 1991 X-ray powder diffraction studies on the rehydration properties of beidellite Clays & Clay Minerals 39 7783 10.1346/CCMN.1991.0390110.CrossRefGoogle Scholar
Kentgens, A P M Scholle, K F M G J and Veeman, W. S., 1983 Effect of hydration on the local symmetry around aluminum in ZSM-5 zeolites studied by aluminum-27 nuclear magnetic resonance J. Phys. Chem. 87 43574360 10.1021/j100245a008.CrossRefGoogle Scholar
Kirkpatrick, R. J., 1988 MAS NMR spectroscopy of minerals and glasses Spectroscopic Methods in Mineralogy and Geology 18 341403 10.1515/9781501508974-011.CrossRefGoogle Scholar
Kirkpatrick, R. J., Kinsey, R. A., Smith, K. A., Henderson, D. M. and Oldfield, E., 1985 High resolution solid-state sodium-23, aluminum-27, and silicon-29 nuclear magnetic resonance spectroscopic reconnaissance of alkali and pla-gioclase feldspars Amer. Mineral. 70 106123.Google Scholar
Kloprogge, J. T., van der Eerden, A M J Jansen, J B H and Geus, J. W., 1990 Hydrothermal synthesis of Na-beidellite Geologie en Mijnbouw 69 351357.Google Scholar
Kloprogge, J. T., Jansen, J B H and Geus, J. W., 1990 Characterization of synthetic Na-beidellite Clays & Clay Minerals 38 409414 10.1346/CCMN.1990.0380410.CrossRefGoogle Scholar
van Koster Groos, A. F. and Guggenheim, S., 1984 The effect of pressure on the dehydration reaction of interlayer water in Na-montmorillonite (SWy-1) Amer. Mineral. 69 872879.Google Scholar
Koster van Groos, A. F. and Guggenheim, S., 1986 Dehydration of K-exchanged montmorillonite at elevated temperatures and pressures Clays & Clay Minerals 34 281286 10.1346/CCMN.1986.0340308.CrossRefGoogle Scholar
Koster van Groos, A. F. and Guggenheim, S., 1987 Dehydration of a Ca- and a Mg-exchanged montmorillonite (SWy-1) at elevated pressures Amer. Mineral. 72 292298.Google Scholar
Kunwar, A. C., Thompson, A. R., Gutowsky, H. S. and Old-field, E., 1984 Solid state aluminum-27 NMR studies of tridecameric Al-oxo-hydroxy clusters in basic aluminum selenate, sulfate, and the mineral zunyite J. Magn. Reson. 60 467472.Google Scholar
Lin, C.-Y. and Bailey, S. W., 1984 The crystal structure of paragonite-2M1 Amer. Mineral. 69 122127.Google Scholar
Loewenstein, W., 1954 The distribution of aluminum in the tetrahedra of silicates and aluminates Amer. Mineral. 57 10891108.Google Scholar
Luca, V., Cardile, C. M. and Meinhold, R. H., 1989 High-resolution multinuclear study of cation migration in montmorillonite Clay Miner. 24 115119 10.1180/claymin.1989.024.1.10.CrossRefGoogle Scholar
Meadows, M. D., Smith, K. A., Kinsey, R. A., Rothgeb, T. M., Skarjune, R. P. and Oldfield, E., 1982 High-resolution solid-state NMR of quadrupolar nuclei Proc. Nat. Acad. Sci. USA 79 13511355 10.1073/pnas.79.4.1351.CrossRefGoogle ScholarPubMed
Oestrike, R., Yang, W.-H. Kirkpatrick, R. J., Hervig, R. L., Navrotsky, A. and Montez, B., 1987 High resolution 23Na, 27A1, and 29Si NMR spectroscopy of framework alu-minosilicate glasses Geochim. Cosmochim. Acta 51 21992209 10.1016/0016-7037(87)90269-9.CrossRefGoogle Scholar
Plee, D., Borg, F., Gatineau, L. and Fripiat, J. J., 1985 High-resolution solid-state 27A1 and 29Si nuclear magnetic resonance study of pillared clays J. Am. Chem. Soc. 107 23622369 10.1021/ja00294a028.CrossRefGoogle Scholar
Shannon, R. D., 1976 Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides Acta Crystallogr. A32 751767 10.1107/S0567739476001551.CrossRefGoogle Scholar
Sidorenko, O. V., Zvyagin, B. B. and Soboleva, S. V., 1977 Refinement of the crystal structure of 2M1 paragonite by the method of high-voltage electron diffraction Sov. Phys./Amer. Inst. Phys. Crystallography 22 554556.Google Scholar
Sidorenko, O. V., Zvyagin, B. B. and Soboleva, S. V., 1977 The crystal structure of 3T paragonite Sov. Phys./Amer. Inst. Phys. Crystallography 22 557560.Google Scholar
Touret, O., Pons, C. H., Tessier, D. and Tardy, Y., 1990 Etude de repartition de l’eau dans les argiles Mg2+ aus fortes teneurs en eau Clay Miner. 25 217233 10.1180/claymin.1990.025.2.07.CrossRefGoogle Scholar
Tuttle, O. F., 1949 Two pressure vessels for silicate-water studies Geol. Soc. Amer. Bull. 60 17271729 10.1130/0016-7606(1949)60[1727:TPVFSS]2.0.CO;2.CrossRefGoogle Scholar
Weiss, C. A., Kirkpatrick, R. J. and Altaner, S. P., 1990 The structural environment of cations adsorbed onto clays: l33Cs variable-temperature MAS NMR spectroscopic study of hectorite Geochim. Cosmochim. Acta 54 16551669 10.1016/0016-7037(90)90398-5.CrossRefGoogle Scholar
Weiss, C. A., Kirkpatrick, R. J. and Altaner, S. P., 1990 Variations in interlayer cation sites of clay minerals as studied by 133Cs MAS nuclear magnetic resonance spectroscopy Amer. Mineral. 75 970982.Google Scholar
Woessner, D. E., 1989 Characterization of clay minerals by 27Al nuclear magnetic resonance spectroscopy Amer. Mineral. 74 203215.Google Scholar
Yang, W.-H. Kirkpatrick, R. J. and Henderson, D. M., 1986 High resolution 29Si, 27A1, and 23Na NMR spectroscopic study of Al−Si disordering in annealed albite and oligoclase Amer. Mineral. 71 712726.Google Scholar