Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-07-04T19:49:15.193Z Has data issue: false hasContentIssue false

Interlamellar and Multilayer Nitrogen Sorption by Homoionic Montmorillonites

Published online by Cambridge University Press:  01 July 2024

M. I. Knudson Jr.*
Affiliation:
Baylor University, Department of Chemistry, Waco, Texas 76703, U.S.A.
J. L. McAtee Jr.
Affiliation:
Baylor University, Department of Chemistry, Waco, Texas 76703, U.S.A.
*
*Present address: Baroid Division, NL Industries, Inc., P.O. Box 1675, Houston, Texas 77001, U.S.A.

Abstract

Nitrogen sorption by various homoionic montmorillonites was studied at 78°K. The adsorption isotherms in the relative pressure range P/P0= 0.05-0.25 were found to be either Type I or Type II in the BET classification. The nitrogen sorption process was considered to be predominantly interla-mellar when described by a Type I isotherm. With a Type II isotherm, the adsorption was assumed to be predominantly on those surfaces not in the interlamellar regions.

It was concluded that only cations within a certain size range promote significant interlamellar nitrogen penetration in montmorillonites. The role of the smaller cations in nitrogen sorption by montmorillonites seems to be their influence on the external aggregate structures. Very large cations tend to clog up the interlamellar pores as well as some of the external voids.

Résumé

Résumé

On a étudié la sorption d’azote à 78°K par différentes montmorillonites homoioniques. Les isothermes d’adsorption dans le domaine des pressions relatives étudiées (P/P0= 0,05-0,25) sont soit du Type I, soit du Type II selon la classification BET. Ce phénomène de sorption d’azote est considéré comme principalement interlamellaire lorsqu’il est décrit par un isotherme du Type I; avec un isotherme du Type II, on suppose que l’adsorption a lieu principalement sur les surfaces non situées dans les régions interlamellaires.

On conclut que seuls des cations d’une certaine taille permettent une pénétration interlamellaire notable de l’azote dans les montmorillonites. Le rôle des cations plus petits dans la sorption de l’azote par les montmorillonites semble consister en l’influence qu’ils ont sur la structure externe des agrégats. Les très gros cations tendent à obstruer aussi bien les pores interlamellaires que les vides externes.

Kurzreferat

Kurzreferat

Die Stickstoffsorption durch verschiedene homoionische Montmorillonite wurde bei 78°K untersucht. Die Adsorptionsisothermen im relativen Druckbereich P/P0= 0,05-0,25 entfielen entweder auf Typ I oder Typ II in der BET-Klassifikation. Der Vorgang der Stickstoffsorption wurde als vorwiegend interlamellar angenommen, wenn er sich durch eine Isotherme vom Typ I beschreiben ließ und vorwiegend an solchen Oberflächen ablaufend, die nicht im interlamellaren Bereich liegen, wenn eine Isotherme vom Typ II vorlag.

Es wurde geschlossen, daß nur Kationen in einem bestimmten Größenbereich ein signifikantes Eindringen von Stickstoff in den Zwischenschichtbereich von Montmorilloniten ermöglichen. Die Rolle kleiner Kationen bei der Stickstoffsorption von Montmorillonit scheint in ihrem Einfluß auf die äußeren Aggregatstrukturen zu liegen. Sehr große Kationen neigen dazu, sowohl unterlamellare Poren als auch einige äußere Hohlräume zu verstopfen.

Резюме

Резюме

Изучается сорбция азота различными гомоионными монтмориллонитами при 78°K. Нашли, что изотермы адсорбции в сравнительном диапазоне давления (Р/Р0 = от 0,05 до 0,25) были по классификации ВЕТ или типа I или II. В присутствии изотерма типа I процесс сорбции считается преимущественно межслойным. А изотерм типа II адсорбируется большей частью на поверхностях, а не между слоями.

В заключение решили, что только катионы в пределах определенного размера стимули-руют межслойную пенетрацию в монтмориллонитах. Роль более малых катионов на сорбцию азота монтмориллонитами, кажется, является их влияние на наружную структуру агрегата. Очень крупные катионы имеют тенденцию засаривать поры промежуточных слоев и также некоторые наружные пустые пространства.

Type
Research Article
Copyright
Copyright © The Clay Minerals Society 1974

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aylmore, L. A. G. Sills, I. D. and Quirk, J. P., (1970) Surface area measurement on clays Letter to the Editor Clays and Clay Minerals 18 407409.CrossRefGoogle Scholar
Aylmore, L. A. G. Sills, I. D. and Quirk, J. P., (1970) Surface area of homionic illite and montmorillonite clay minerals as measured by the sorption of nitrogen and carbon dioxide Clays and Clay Minerals 18 9196.CrossRefGoogle Scholar
Aylmore, L. A. G. and Quirk, J. P., (1967) The micropore size distributions of clay mineral systems J. Soil Sci. 18 117.CrossRefGoogle Scholar
Barrer, R. M. and Millington, A. D., (1967) Sorption and in-tracrystalline porosity in organo-clays J. Colloid Sci. 25 359372.CrossRefGoogle Scholar
Barrer, R. M. and Brummer, K., (1963) Relations between partial ion exchange and interlamellar sorption in alkyl-ammonium montmorillonites Trans. Faraday Soc. 59 959968.CrossRefGoogle Scholar
Barrer, R. M. and Reay, J. S. S., (1958) Sorption by NH+4-and Cs+-montmorillonite, and ion fixation J. Chem. Soc. 38243830.CrossRefGoogle Scholar
Barrer, R. M. and Reay, J. S. S., (1957) Sorption and intercalation by methylammonium montmorillonites Trans. Faraday Soc. 53 12531261.CrossRefGoogle Scholar
Barrer, R. M. and McLeod, D. M., (1955) Activation of montmorillonite by ion exchange and sorption complexes of tetra-alkyl ammonium montmorillonite Trans. Faraday Soc. 51 12901300.CrossRefGoogle Scholar
Barrer, R. M. and McLeod, D. M., (1954) Intercalation and sorption by montmorillonite Trans. Faraday Soc. 50 980989.CrossRefGoogle Scholar
Brooks, C. S., (1955) Nitrogen adsorption experiments on several clay minerals Soil Sci. 79 331347.CrossRefGoogle Scholar
Edwards, D. G., Posner, A. M. and Quirk, J. P., (1965) The repulsion of chloride ions by negatively charged clay surfaces—II and III Trans. Faraday Soc. 61 28162823.CrossRefGoogle Scholar
Greene-Kelly, R., (1964) The specific surface area of montmorillonite Clay Mineral Bull. 5 392400.CrossRefGoogle Scholar
Gregg, S. S. and Sing, K. S. W., (1967) Adsorption Surface Area and Porosity .CrossRefGoogle Scholar
Knudson, M. I. and McAtee, J. L. Jr., (1973) The effect of cation exchange of tris(ethylenediamine)cobalt(III) for sodium on nitrogen adsorption by montmorillonite Clays and Clay Minerals 21 1926.CrossRefGoogle Scholar
Mooney, R. W., Keenan, A. G. and Wood, L. A., (1952) Adsorption of water vapor by montmorillonite—II J. Am. Chem. Soc. 74 13711374.CrossRefGoogle Scholar
van Olphen, H., (1966) An Introduction to Clay Colloid Chemistry .Google Scholar
Pierce, C., (1959) Effects of interparticle condensation on heats of adsorption and isotherms of powder samples J. Phys. Chem. 63 10761079.CrossRefGoogle Scholar
Slabaugh, W. H., (1971) Surface chemistry of thermally decomposed organo-montmorillonite complexes Clays and Clay Minerals 19 201204.CrossRefGoogle Scholar
Thomas, J. Jr. Bohor, B. F. and Frost, R. R., (1970) Surface area measurement on clays Letter to the Editor Clays and Clay Minerals 18 405407.CrossRefGoogle Scholar
Thomas, J. Jr. and Bohor, B. F., (1969) Surface area of ver-miculite with nitrogen and carbon dioxide as adsorbates Clays and Clay Minerals 17 205209.CrossRefGoogle Scholar
Thomas, J. and Bohor, B. F., (1968) Surface area of montmorillonite from the dynamic sorption of nitrogen and carbon dioxide Clays and Clay Minerals 16 8392.CrossRefGoogle Scholar