Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T13:45:17.424Z Has data issue: false hasContentIssue false

Intercalation Method using Formamide for Differentiating Halloysite from Kaolinite

Published online by Cambridge University Press:  02 April 2024

G. J. Churchman
Affiliation:
Soil Bureau, Department of Scientific and Industrial Research, Private Bag, Lower Hutt, New Zealand
J. S. Whitton
Affiliation:
Soil Bureau, Department of Scientific and Industrial Research, Private Bag, Lower Hutt, New Zealand
G. G. C. Claridge
Affiliation:
Soil Bureau, Department of Scientific and Industrial Research, Private Bag, Lower Hutt, New Zealand
B. K. G. Theng
Affiliation:
Soil Bureau, Department of Scientific and Industrial Research, Private Bag, Lower Hutt, New Zealand
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A rapid and simple test to distinguish halloysite from kaolinite in mineral mixtures has been developed based on differences in the rate and extent of formamide intercalation. With halloysite, complex formation was both rapid (<1 hr) and complete, whereas no significant intercalation occurred with kaolinite until at least 4 hr after contact with formamide, and then the process may not have been complete. Unheated halloysite formed complete complexes with formamide regardless of the interlayer hydration state of the mineral. The test, however, was inconclusive for halloysite that had been oven-dried at 110°C, although some water may still have been present in the interlayer space. The extent of formamide intercalation by kaolinite was likely influenced by sample crystallinity, and the rate of complex formation was enhanced by the addition of up to 10% v/v water to the system. Nevertheless, the formamide test unambiguously differentiated halloysite from kaolinite. N-methylformamide, which yields complexes with a basal spacing of 10.9 Å, could be substituted for formamide (basal spacing = 10.4 Å) for samples containing appreciable amounts of illite-mica.

Резюме

Резюме

Разработан быстрый и простой опыт для отличения галлуазита от каолинита в смесях минералов на основе разниц в скоростях и размере прослойки формамида. В случае галлуазита формирование комплексов было и быстрое (<1 часа) и полное, тогда как в случае каолинита значительная прослойка не появлялась по крайней мере 4 часа после контакта с формамидом и еще потом процесс мог быть не завершенным. Неподогретый галлуазит образовывал завершенные комплексы с формамидом несмотря на межслойное гидрационное состояние минерала. Однако нельзя было сделать выводы из опыта с галлуазитом, сушенным в печи при 110°С, хотя некоторые количество воды могло присутствовать в межслойном пространстве. На размер прослойки формамида с каолинитом, вероятно, влияла кристалличность образцов, а скорость образования комплекса увеличивалась при добавлении к системе до 10% воды (по объему). Тем не менее опыт с формамидом без сомнения отличал галлуазит от каолинита. N-метилформамид, который дает комплексы с основным расстоянием 10,9 Å мог бы быть заменен формамидом (основное расстояние = 10,4 Å) в случае образцов, содержащих значительные количества иллита-слюды. [E.G.]

Resümee

Resümee

Es wurde ein schneller und einfacher Test zur Unterscheidung von Halloysit und Kaolinit in Mineralgemengen entwickelt, die auf der unterschiedlichen Geschwindigkeit und dem unterschiedlichen Ausmaß des Einbaus von Formamid beruht. Bei Halloysit geht die Komplexbildung sowohl schnell (< 1 Stunde) als auch vollständig vor sich, während bei Kaolinit bis mindestens 4 Stunden nach dem Beginn der Einwirkung von Formamid kein bemerkenswerter Einbau geschieht, und auch dann ist der Prozess nicht vollständig. Nicht erhitzter Halloysit bildet vollständige Komplexe mit Formamid unabhängig vom Hydratationsstadium der Zwischenschicht. Der Test war jedoch für Halloysit, der bei 110°C im Trockenschrank getrocknet wurde, nicht eindeutig, obwohl noch eine gewisse Menge Wasser in der Zwischenschicht enthalten gewesen Scin könnte. Das Ausmaß des Formamideinbaus durch Kaolinit wurde wahrscheinlich durch die Kristallinität der Probe beeinflußt, und die Geschwindigkeit der Komplexbildung wurde durch die Zugabe von bis zu 10% v/v Wasser zum System erhöht. Dennoch kann man durch den Formamid test eindeutig Halloysit von Kaolinit unterscheiden. N-methylformamid, mit dem Komplexe mit einem basalem Schichtabstand von 10,9 Å gebildet werden, kann anstelle von Formamid (Basis abstand 10,4 Å) bei Proben mit größeren Mengen Illit-Mica verwendet werden. [U.W.]

Résumé

Résumé

Un test rapide et simple a été développé pour distinguer l'halloysite de la kaolinite dans des mélanges minéraux, basé sur les différences d'allure et d’étendue d'intercalation de formamide. Avec l'halloysite, la formation de complexe était à la fois rapide (< 1 heure) et complète, tandis qu'aucune intercalation significative ne s'est produite avec la kaolinite jusqu’à au moins 4 heures après le contact avec la formamide, et alors il est possible que le procédé n'ait pas été complet. L'halloysite non-chauffée a formé des complexes avec la formamide sans égards à l’état d'hydration interfeuillet du minéral. Aucune conclusion n'a cependant pû être tirée du test pour l'halloysite qui avait été sechée au four à 110°C, quoiqu'il est possible que de l'eau ait encore été présente dans l'espace interfeuillet. L’étendue de l'inter-calation de formamide par la kaolinite était probablement influencée par la cristallinité de l’échantillon, et l'allure de la formation du complexe a été encouragée par l'addition au système de jusqu'a 10% v/v d'eau. Il n'empêche que le test de formamide a differencié sans ambiguités l'halloysite de la kaolinite. La formamide N-méthyle, qui produit des complexes avec un espacement de base de 10,9 Å, pourrait être substituée à la formamide (espacement de base = 10,4 Å) pour des échantillons contenant des quantités appréciables d'illite/mica. [D.J.]

Type
Research Article
Copyright
Copyright © 1984, The Clay Minerals Society

References

Beutelspacher, H. and Van der Marel, H. W., 1968 Atlas of Electron Microscopy of Clay Minerals and Their Admixtures Amsterdam Elsevier.CrossRefGoogle Scholar
Brindley, G. W. and de Souza Santos, P., 1966 New varieties of kaolin-group minerals and the problem of finding a suitable nomenclature Proc. Int. Clay Conf., Jerusalem 1966 1 39.Google Scholar
Churchman, G. J., 1970 Interlayer water in halloysite New Zealand Ph.D. thesis, University of Otago.Google Scholar
Churchman, G. J. and Carr, R. M., 1975 The definition and nomenclature of halloysites Clays & Clay Minerals 20 241246.CrossRefGoogle Scholar
Churchman, G. J. and Theng, B. K. G. (1984) Interactions of halloysites with amides: mineralogical factors affecting complex formation: Clay Miner. 19, (in press).CrossRefGoogle Scholar
Dixon, J.B., Dixon, J. B. and Weed, S. B., 1977 Kaolinite and serpentine group minerals Minerals in Soil Environments Madison, Wisconsin Soil Science Society of America 357403.Google Scholar
Hewitt, A. E. and Churchman, G. J., 1982 Formation, chemistry and mineralogy of soils from weathered schist, Eastern Otago, New Zealand New Zealand J. Sci. 25 253269.Google Scholar
Hinckley, D. N. and Bradley, W. F., 1963 Variability in ‘crystallinity’ values among the kaolin deposits of the coastal plain of Georgia and South Carolina Clays & Clay Minerals, Proc. 11th Natl. Conf, Ottawa, Ontario, 1962 New York Pergamon Press 229235.Google Scholar
Hughes, I.R., 1966 Mineral changes of halloysite on drying New Zealand J. Sci. 9 103113.Google Scholar
Hughes, I. R. and Foster, P. K., 1970 The ranking of halloysites and kaolinites by moisture content measurements New Zealand J. Sci. 13 89107.Google Scholar
Hughes, J. C. and Brown, G., 1979 A crystallinity index for soil kaolins and its relation to parent rock, climate and soil maturity J. Soil Sci. 30 557563.CrossRefGoogle Scholar
Jackson, M. L., 1956 Soil Chemical Analysis—Advanced Course Madison, Wisconsin Published by the author, Dept. Soil Science, Univ. Wisconsin.Google Scholar
Keller, W. D., Cheng, H., Johns, W. D. and Meng, C.-S., 1980 Kaolin from the original Kauling (Gaoling) mine locality, Kiangsi Province, China Clays & Clay Minerals 28 97104.CrossRefGoogle Scholar
Kirkman, J. H., 1981 Morphology and structure of halloysite in New Zealand tephras Clays & Clay Minerals 29 19.CrossRefGoogle Scholar
Marsters, S., 1978 Report upon the extraction and industrial uses of halloysite Proc. Ann. Conf. Australasian Institute of Mining and Metallurgy, Whangarei, New Zealand 1978 Whangarei Australasian Institute of Mining and Metallurgy, New Zealand Branch 91100.Google Scholar
Olejnik, S., Posner, A. M. and Quirk, J. P., 1970 The intercalation of polar organic compounds into kaolinite Clay Miner. 8 421434.CrossRefGoogle Scholar
Parker, T. W., 1969 A classification of kaolinites by infrared spectroscopy Clay Miner. 8 135141.CrossRefGoogle Scholar
Soil Survey Staff, 1975 Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys Washington, D.C. U.S. Dept. Agriculture, Handbook No. 436, U.S. Govt. Printing Office.Google Scholar
Sudo, T., Shimoda, S., Yotsumoto, H. and Aita, S., 1981 Electron Micrographs of Clay Minerals Amsterdam Kodansha, Tokyo and Elsevier.Google Scholar
Theng, B. K. G., Churchman, G. J., Whitton, J. S. and Claridge, G. G. C., 1984 Comparison of intercalation methods for differentiating halloysite from kaolinite. Clays & Clay Minerals. .CrossRefGoogle Scholar
Wada, K., 1961 Lattice expansion of kaolin minerals by treatment with potassium acetate Amer. Mineral. 46 7891.Google Scholar