Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-28T01:25:44.922Z Has data issue: false hasContentIssue false

Interaction of Vermiculite with Aliphatic Amides (Formamide, Acetamide and Propionamide): Formation and Study of Interstratified Phases in the Transformation of Mg- to NH4-Vermiculite

Published online by Cambridge University Press:  28 February 2024

Antonio Ruiz-Conde
Affiliation:
Instituto de Ciencia de Materiales de Sevilla, Centro Mixto Consejo Superior de Investigaciones Científicas (C.S.I.C.), Universidad de Sevilla, Avenida Américo Vespucio s/n, Isla de la Cartuja, 41092-Sevilla, Spain
Antonio Ruiz-Amil
Affiliation:
Instituto de Ciencia de Materiales de Sevilla, Centro Mixto Consejo Superior de Investigaciones Científicas (C.S.I.C.), Universidad de Sevilla, Avenida Américo Vespucio s/n, Isla de la Cartuja, 41092-Sevilla, Spain
Jose L. Perez-Rodriguez
Affiliation:
Instituto de Ciencia de Materiales de Sevilla, Centro Mixto Consejo Superior de Investigaciones Científicas (C.S.I.C.), Universidad de Sevilla, Avenida Américo Vespucio s/n, Isla de la Cartuja, 41092-Sevilla, Spain
Pedro J. Sanchez-Soto
Affiliation:
Instituto de Ciencia de Materiales de Sevilla, Centro Mixto Consejo Superior de Investigaciones Científicas (C.S.I.C.), Universidad de Sevilla, Avenida Américo Vespucio s/n, Isla de la Cartuja, 41092-Sevilla, Spain
Francisco Aragon de la Cruz
Affiliation:
Instituto de Ciencia de Materiales de Madrid, C.S.I.C., Cantoblanco 28049 Madrid, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Mg-vermiculite from Santa Olalla has been treated with aliphatic amides—formamide (FM), acetamide (AM) and propionamide (PM)—in aqueous solution. These treatments produce the transformation towards NH4-vermiculite and interstratified NH4-vermiculite-Mg-vermiculite phases. The NH4-vermiculite, Mg-vermiculite and interstratified (mixed-layer) phases have been identified from basal X-ray diffraction (XRD) interval peaks between 10.3 Å and 14.4 Å, and confirmed by direct Fourier transform method, as well as by atomic absorption spectrometry (AAS), infrared (IR) spectroscopy and thermal analysis.

According to their NH4-vermiculite/Mg-vermiculite probability coefficients ratio (PA/PB), and PAA, these interstratified phases can be divided into 3 categories: 1) If the PA/PB ratio is ≥ 7/3 and PAA ≥ 0.7, there are interstratified phases with a strong tendency toward segregation (case of FM, AM and PM). 2) If the PA/PB ratio is between 5/5 and 6/4, with PAA in the range 0.45–0.6, there are nearly regular alternating and random interstratified phases (case of AM and PM). 3) If the PA/PB ratio is ≤ 5/5 and PAA ≤ 0.45, there are interstratified phases with a strong tendency toward alternation (case of PM).

Experimental evidence reported in the present work indicates that the mechanism of interaction of Mg-vermiculite with FM, AM and PM in an aqueous medium takes place by ion exchange of NH4 between the layers. The hydrolysis of these aliphatic amides leads to the liberation of NH4+ into the medium. It has been found that the NH4+ sorption depends on the physico-chemical characteristics of the particular aliphatic amide, and the transformation of Mg-vermiculite to interstratified and/or NH4-vermiculite phases depends on the amide concentration. These treatments allow one to control the formation of interstratified and NH4-vermiculite phases.

Type
Research Article
Copyright
Copyright © 1997, The Clay Minerals Society

References

Ahlrichs, J.L. Fraser, A.R. and Russell, J.D., (1972) Interaction of ammonia with vermiculite Clay Miner 9 9273 10.1180/claymin.1972.009.3.01.CrossRefGoogle Scholar
de la Aragón Cruz, F. Ruiz-Amil, A. and Ruiz-Conde, A., (1992) Intercalation of organic compounds in interstratified kaolinite-smectite mineral Miner et Petrograph Acta 35 35313.Google Scholar
Barshad, I., (1952) Factors affecting the interlayer expansion of vermiculite and montmorillonite with organic substances Soil Sci Soc Am Proc 16 16182 10.2136/sssaj1952.03615995001600020018x.CrossRefGoogle Scholar
Barshad, I., (1954) Cation exchange in micaceous minerals: I. Replaceability of the interlayer cations of vermiculite with ammonium and potassiumions Soil Sci 77 77467 10.1097/00010694-195406000-00007.CrossRefGoogle Scholar
Barshad, I., (1954) Cation exchange in micaceous minerals: II. Replaceability of ammonium and potassium from vermiculite, biotite, and montmorillonite Soil Sci 78 78 63 10.1097/00010694-195407000-00007.CrossRefGoogle Scholar
Bennett, H. Eardley, R.P. Hawley, W.G. and Thwaites, I., (1962) Routine control analysis of high-silica and aluminosilicate materials Trans J Br Ceram Soc 61 61666.Google Scholar
de la Calle, C. Suquet, H. and Bailey, S.W., (1988) Vermiculite Hydrous phyllosilicates, Rev Mineral 19 Washington Mineral Soc Am..Google Scholar
de la Calle, C. Suquet, H. and Pons, C.H., (1988) Stacking order in a 14.3-Å Mg-vermiculite Clays Clay Miner 36 36490.CrossRefGoogle Scholar
Douglas, L.A., Dixon, J.B. and Weed, S.B., (1989) Vermiculites Minerals in soil environment 2nd ed. Madison Soil Sci Soc Am..Google Scholar
Fraenkel, A. and Franconi, C., (1960) Protonation of amides J Am Chem Soc 82 824483 10.1021/ja01486a017.CrossRefGoogle Scholar
Fripiat, J.J., (1964) Surface properties of alumino-silicates Clays Clay Miner 12 12357.Google Scholar
Fripiat, J.J., (1986) Internal surface of clays and constrained chemical reactions Clays Clay Miner 34 34506 10.1346/CCMN.1986.0340501.CrossRefGoogle Scholar
González-García, F. and García-Ramos, G., (1960) Procesos de génesis y degradación de vermiculita: Yacimiento de Santa Olalla (Huelva). I. Descripción del yacimiento y toma de muestras Anal Edaf Agrobiol 7–8 381398.Google Scholar
Ibers, J.A. and Hamilton, W.C., (1974) International tables for X-ray crystallography, vol IV. Birmingham Kynoch Pr..Google Scholar
Justo, A., (1984) Estudio Fisicoquímico y Mineralógico de las Vermiculitas de Andalucía y Badajoz [Ph.D. dissertation] Sevilla Univ of Sevilla.Google Scholar
Justo, A. Maqueda, C. and Pérez-Rodríguez, J.L., (1986) Estudio químico de vermiculitas de Andalucía y Badajoz Bol Soc Esp Miner 9 9129.Google Scholar
Justo, A. Maqueda, C. Pérez-Rodríguez, J.L. and Morillo, E., (1989) Expansibility of some vermiculites Appl Clay Sci 4 4519 10.1016/0169-1317(89)90027-6.CrossRefGoogle Scholar
Justo, A. Pérez-Rodríguez, J.L. and Sánchez-Soto, P.J., (1993) Thermal study of vermiculites and mica-vermiculite interstratifications J Therm Anal 40 4063 10.1007/BF02546555.CrossRefGoogle Scholar
Kittrick, J.A., (1966) Forces involved in ion fixation by vermiculite Soil Sci Soc Am Proc 30 30803 10.2136/sssaj1966.03615995003000010016x.CrossRefGoogle Scholar
Lagaly, G. and Witter, R., (1982) Clustering of liquid molecules on solid surfaces Berichte Bunsen Gesellschaft für Physikalische Chemie 86 86 80.Google Scholar
Lagaly, G., (1987) Clay-organic interactions: Problems and recent results Proc Int Clay Conf Denver. Bloomington, IN Clay Miner Soc..Google Scholar
Ledoux, R.L. and White, J.L., (1966) Infrared studies of hydrogen bonding between kaolinite surfaces and intercalated potassium acetate, hydrazine, formamide and urea J Colloid Interface Sci 21 127152 10.1016/0095-8522(66)90029-8.CrossRefGoogle Scholar
MacKenzie, R.C.. 1970. Differential Thermal Analysis, vol. I. London: Academic Pr. 775 p.Google Scholar
MacEwan, D.M.C. Ruiz-Amil, A. Brown, G. and Brown, G., (1961) Interstratified clay minerals The X-ray identification and crystal structures of clay minerals London Mineral Soc..Google Scholar
de Martin Vidales, J.L. Vila, E. Ruiz-Amil, A. de la Calle, C. and Pons, C.H., (1990) Interstratification in Malawi vermiculite: Effect of bi-ionic K-Mg solutions Clays Clay Miner 38 38521.CrossRefGoogle Scholar
Morillo, E. Pérez-Rodríguez, J.L. and Maqueda, C., (1990) Decomposition of alkylammonium cations adsorbed on vermiculite under ambient conditions Appl Clay Sci 5 5187 10.1016/0169-1317(90)90022-H.CrossRefGoogle Scholar
Morrison, R.T. Boyd, R.N., Morrison, R.T. and Boyd, R.N., (1985) Reacciones de Amidas Química Orgánica 2nd ed. Mexico Edit Fondo Educativo Interamericano.Google Scholar
Mortland, M.M., (1970) Clay-organic complexes and interactions Adv Agron 22 22117.Google Scholar
Mortland, M.M. and Raman, K.V., (1968) Surface acidity of smectites in relation to hydration, exchangeable cation, and structure Clays Clay Miner 16 393398 10.1346/CCMN.1968.0160508.CrossRefGoogle Scholar
Nehring, K., (1960) Agrikulturchemische Untersuchungs-methoden fur Dunge Hamburg Verlag Paul Parey.Google Scholar
Olivera-Pastor, P. Rodríguez-Castellón, E. and Rodríguez-García, A., (1987) Interlayer complexes of lanthanide-vermiculites with amides Clay Miner 22 22483 10.1180/claymin.1987.022.4.11.CrossRefGoogle Scholar
Page, A.L. Burge, W.D. Ganje, T.J. and Garber, M.J., (1967) Potassium and ammonium fixation in vermiculite soils Soil Sci Soc Am Proc 31 31341 10.2136/sssaj1967.03615995003100030016x.CrossRefGoogle Scholar
Pérez-Rodríguez, J.L. Maqueda, C. and Justo, A., (1985) Pyrophyllite determination in mineral mixtures Clays Clay Miner 33 33566.Google Scholar
Pérez-Rodríguez, J.L. Morillo, E. and Maqueda, C., (1988) Decomposition of alkylammonium cations intercalated in vermiculite Clay Miner 23 23390.CrossRefGoogle Scholar
Pons, C.H. Pozzuoli, A. Rausell-Colom, J.A. and de la Calle, C., (1989) Mécanisme de passage de l’état hydraté à une couche à l’éat “zéro couche” d’une vermiculite-Li de Santa-Olalla Clay Miner 24 24494 10.1180/claymin.1989.024.3.02.CrossRefGoogle Scholar
Pozzuoli, A. Vila, E. Franco, E. Ruiz-Amil, A. and de la Calle, C., (1992) Weathering of biotite to vermiculite in quaternary lahars from Monti Ernici, Central Italy Clay Miner 27 27184 10.1180/claymin.1992.027.2.03.CrossRefGoogle Scholar
Raman, K.V. and Mortland, M.M., (1969) Proton transfer reactions at clay mineral surfaces Soil Sci Soc Am Proc 33 33317 10.2136/sssaj1969.03615995003300020040x.CrossRefGoogle Scholar
Rausell-Colom, J.A. Fernandez, M. Serratosa, J.M. Alcover, J.F. and Gatineau, L., (1980) Organisation de l’espace interlamellaire dans les vermiculites monocouches et anhydres Clay Miner 15 1557 10.1180/claymin.1980.015.1.04.CrossRefGoogle Scholar
von Reichenbach, H. G. and Beyer, J., (1994) Dehydration and rehydration of vermiculites: I Phlogopitic Mg-vermiculite. Clay Miner 29 29340.Google Scholar
Ruiz-Amil, A. de la Aragón Cruz, F. Vila, E. and Ruiz-Conde, A., (1992) Study of a material from Libby, Montana, containing vermiculite and hydrobiotite: Intercalation with aliphatic amines Clay Miner 27 257263 10.1180/claymin.1992.027.2.11.CrossRefGoogle Scholar
Ruiz-Amil, A. Ramírez-García, A. and MacEwan, D.M.C., (1967) X-Ray diffraction curves for the analysis of interstratified structures Edinburgh Volturna Pr..Google Scholar
Ruiz-Amil, A. Vila, E. Franco, E. and Pozzuoli, A., (1993) X-ray diffraction analysis of biotite weathering to vermiculite in Quaternary lahars from Monti Ernici, Central Italy Neues Jahrbuch für Mineralogie Monatshefte H1 1730.Google Scholar
Serratosa, J.M. Johns, W.D. and Shimoyama, A., (1970) Infrared study of alkylammonium vermiculite complexes Clays Clay Miner 18 18113 10.1346/CCMN.1970.0180206.CrossRefGoogle Scholar
Spinner, E., (1959) The vibration spectra and structure of the Hydrochlorides of urea, thiourea, and acetamide. The basic properties of amides and thioamides Spectrochim Acta 15 95109 10.1016/S0371-1951(59)80294-0.CrossRefGoogle Scholar
Stone, M.H. and Wild, A., (1978) The reaction of ammonia with vermiculite and hydrobiotite Clay Miner 13 13350 10.1180/claymin.1978.013.3.08.CrossRefGoogle Scholar
Stutzmann, T. and Siffert, B., (1977) Contribution to the adsorption mechanism of acetamide and polyacrylamide on to clays Clays Clay Miner 25 25406 10.1346/CCMN.1977.0250604.CrossRefGoogle Scholar
Suquet, H. Chevalier, S. Marcilly, C. and Barfhomeuf, D., (1991) Preparation of porous materials by chemical activation of the Llano vermiculite Clay Miner 26 2660 10.1180/claymin.1991.026.1.06.CrossRefGoogle Scholar
Suquet, H. Malard, M. Quarton, M. Dubernat, J. and Pereat, H., (1984) Etude du biopyribole formé par chauffage des vermiculites magnésiennes Clay Miner 19 19227 10.1180/claymin.1984.019.2.08.CrossRefGoogle Scholar
Tahoun, S.A. and Mortland, M.M., (1966) Complexes with primary, secondary and tertiary amides (I). Protonation of amides on the surface of montmorillonite Soil Sci 102 248254 10.1097/00010694-196610000-00006.CrossRefGoogle Scholar
Theng, B.K.G., (1972) Adsorption of ammonium, and some primary n-alkylammonium cations by soil allophane Nature 238 150151 10.1038/238150a0.CrossRefGoogle Scholar
Theng, B.K.G., (1974) The chemistry of clay-organic reactions New York Halsted Pr..Google Scholar
Vila, E. and Ruiz-Amil, A., (1988) Computer program for analysing interstratified structures by Fourier transform methods Powder Diffrac 3 311 10.1017/S0885715600013038.CrossRefGoogle Scholar
Walker, G.F., (1956) The mechanism of dehydration of Mg-vermiculite Clays Clay Miner 4 4115.Google Scholar