Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-10T10:52:10.756Z Has data issue: false hasContentIssue false

Interaction of Rimsulfuron with Smectites

Published online by Cambridge University Press:  28 February 2024

Luca Calamai
Affiliation:
Dipartimento di Scienza del Suolo e Nutrizione della Pianta, Università di Firenze, Piazzale Cascine 28, 50144 Firenze, Italy
Ottorino Pantani
Affiliation:
Centro di Studio per i Colloidi del Suolo, CNR, Piazzale Cascine 28, 50144 Firenze, Italy
Alba Pusino
Affiliation:
Dipartimento di Scienze Ambientali Agrarie e Biotecnologie Agro-Alimentari, Università di Sassari Viale Italia 39, 07100 Sassari, Italy
Carlo Gessa
Affiliation:
Istituto di Chimica Agraria, Università di Bologna, Via Berti Pichat 11, 40127 Bologna, Italy
Paolo Fusi
Affiliation:
Dipartimento di Scienza del Suolo e Nutrizione della Pianta, Università di Firenze, Piazzale Cascine 28, 50144 Firenze, Italy
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The adsorption of the sulfonylurea herbicide rimsulfuron, [N-((4,6-dimethoxypyrimidin-2-yl)aminocarbonyl)-3-(ethylsulfonyl)-2-pyridinesulfonamide], on clay minerals with different saturating cations was studied. Three smectites with different lattice charge distribution (hectorite, montmorillonite and nontronite) were selected and made homoionic to Ca2+, Cu2+ and Al3+. Because of the instability of rimsulfuron in water, the experiments were carried out in chloroform solution. The interaction mechanism depends on the nature of the saturating cation and the tetrahedral layer charge of the silicate. Among the exchangeable ions studied, only Al3+ is able to produce degradation of the herbicide to N-(4,6-dimethoxypyrimidin-2-yl)-N-[(3-(ethylsulfonyl)-2-pyridinyl]urea. In this case, the lower the tetrahedral charge, the more active the degradation. The Ca2+-saturated clays are ineffective in the degradation. In contrast, the formation of a stable chelate complex with the saturating ion permits rimsulfuron to be adsorbed to a rather high extent into Cu(II)-clays and to be stable against degradation.

Type
Research Article
Copyright
Copyright © 1997, The Clay Minerals Society

References

Beyer, E.M. Jr, Duffy, M.J., Hay, J.V. and Schlueter, D.D.. 1988. Herbicides: Chemistry, degradation and mode of action, vol 3. Kearney, P.C., Kaufman, D.D., editors. New York: Dekker. p 117190.Google Scholar
Farmer, V.C.. 1978. Water on particle surfaces. In: Greenland, D.J., Hayes, M.H.B., editors. The chemistry of soil constituents. New York: J Wiley. p 405448.Google Scholar
Franci, M., Fusi, P. and Ristori, G.G.. 1990. The influence of structural characteristics of two smectites on linuron adsorption. Agrochimica 34: 405410.Google Scholar
Jaynes, W.F. and Bigham, J.M.. 1986. Multiple cation-exchange capacity measurements on standard clays using a commercial mechanical extractor. Clays Clay Miner 34: 9398.CrossRefGoogle Scholar
Jaynes, W.F. and Bigham, J.M.. 1987. Charge reduction, octahedral charge, and lithium retention in heated, Li-saturated smectites. Clays Clay Miner 35: 440448.CrossRefGoogle Scholar
Kowalska, M., Güler, H. and Cocke, D.L.. 1994. Interactions of clay minerals with organic pollutants. Sci Total Environ 141: 223240.CrossRefGoogle Scholar
Menabue, L. and Saladini, M.. 1993. Coordination behaviour of sulfa-drugs: Synthesis, structural, and spectroscopic investigation on M(II) (N1-pyrimidin-2-yl-sulfanilamido)2H2O. J Inorg Biochem 49: 201207.CrossRefGoogle Scholar
Mortland, M.M. and Raman, K.V.. 1968. Surface acidity of smectites in relation to hydration exchangeable cation and structure. Clays Clay Miner 16: 393398.CrossRefGoogle Scholar
Ortego, J.D., Kowalska, M. and Cocke, D.L.. 1991. Interactions of montmorillonite with organic compounds—Adsorptive and catalytic properties. Chemosphere 22: 769798.CrossRefGoogle Scholar
Palm, H.L., Liang, P.H., Fuesler, T.P., Leek, G.L., Strachan, S.D., Swinchatt, M.L. and Wittenbach, V.A.. 1989. New low-rate sulfonylureas for postemergence weed control in corn. Proc Br Crop Prot Conf Weeds 1: 2328.Google Scholar
Pantani, O., Calamai, L. and Fusi, P.. 1994. Influence of clay minerals on adsorption and degradation of a sulfonylurea herbicide (cinosulfuron). Appl Clay Sci 8: 373387.CrossRefGoogle Scholar
Pantani, O., Pusino, A., Calamai, L., Gessa, C. and Fusi, P.. 1996. Adsorption and degradation of rimsulfuron on Al-hectorite. J Agric Food Chem 44: 617621.CrossRefGoogle Scholar
Pusino, A. and Gessa, C.. 1990. Catalytic hydrolysis of diclofopmethyl on Ca-, Na- and K-montmorillonite. Pestic Sci 30: 211216.CrossRefGoogle Scholar
Pusino, A., Gessa, C. and Kozlowski, H.. 1988. Catalytic hydrolysis of quinalphos on homoionic clays. Pestic Sci 24: 18.CrossRefGoogle Scholar
Pusino, A., Liu, W. and Gessa, C.. 1993. Dimepiperate adsorption and hydrolysis on Al3+-, Fe3+-, Ca2+-, and Na+-montmorillonite. Clays Clay Miner 41: 335340.CrossRefGoogle Scholar
Ristori, G.G., Fusi, P. and Cecconi, S.. 1982. The influence of structural characteristics of smectites on catalytic decomposition of Asulam. In: Van Olphen, H., Veniale, F., editors. Development in sedimentology 35. International Clay Conference; 1981; Bologna and Pavia. Amsterdam: Elsevier Science. p 267272.Google Scholar
Saltzman, S., Yaron, B. and Mingelgrin, U.. 1974. The surface catalyzed hydrolysis of parathion on kaolinite. Soil Sci Soc Am Proc 38: 231234.CrossRefGoogle Scholar
Sanchez Camazano, M. and Sanchez Martin, M.J.. 1983. Montmorillonite-catalyzed hydrolysis of phosmet. Soil Sci 136: 8993.CrossRefGoogle Scholar
Schneiders, G.E., Koeppe, M.K., Naidu, M.V., Horne, P., Brown, A.M. and Mucha, C.F.. 1993. Fate of rimsulfuron in the environment. J Agric Food Chem 41: 24042410.CrossRefGoogle Scholar
Swoboda, A.R. and Kunze, G.W.. 1968. Reactivity of montmorillonite surfaces with weak organic bases. Soil Sci Soc Am Proc 32: 806819.CrossRefGoogle Scholar
Ukrainczyk, L. and Rashid, N.. 1995. Irreversible sorption of nicosulfuron on clay minerals. J Agric Food Chem 43: 855857.CrossRefGoogle Scholar