Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-22T23:01:11.028Z Has data issue: false hasContentIssue false

Interaction of Phenamiphos with Montmorillonite

Published online by Cambridge University Press:  02 April 2024

J. Maza Rodríguez
Affiliation:
Departamento de Química Inorgánica, Universidad de Malaga, Apartado 59, 29071 Málaga, Spain
A. Jiménez López
Affiliation:
Departamento de Química Inorgánica, Universidad de Malaga, Apartado 59, 29071 Málaga, Spain
Sebastián Bruque
Affiliation:
Departamento de Química Inorgánica, Universidad de Malaga, Apartado 59, 29071 Málaga, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Phenamiphos interacted with homoionic montmorillonites of Ca2+, Mn2+, Co2+, and Ni2+ to form interlayer complexes having basal spacings of about 16.5 Å. In the infrared spectra, the ν-PO bands were displaced towards lower frequencies suggesting that this group interacted with the exchange cations. Moreover, a small shoulder at 1600 cm−1 indicated the partial protonation of the phenamiphos. After heating the complexes to 110°, 160°, and 200°C, however, the bands corresponding to δ-NH2+ and ν-NH intensified because of increased protonation, whereas the ν-PO bands had the same intensity as in pure phenamiphos. The fundamental implication of these observations is that phenamiphos interacts with exchange cations through molecules of coordinated water, possibly by means of the P=O group.

Type
Research Article
Copyright
Copyright © 1988, The Clay Minerals Society

References

Bailey, G. W. and White, J. L., 1970 Factors influencing the adsorption, desorption and movement of pesticides in soil Res. Rev. 32 2992.Google Scholar
Bellamy, L.J., 1975 The Infrared Spectra of Complex Molecules London Chapman and Hall 289291.CrossRefGoogle Scholar
Bowman, B. T., Adams, R. S. Jr. and Fenton, S. W., 1970 Effect of water upon malation adsorption onto five montmorillonite systems J. Agric. Food Chem. 18 723727.CrossRefGoogle Scholar
Gutierrez Rios, E. and Garcia, F., 1949 Genesis of the montmorillonite of Spanish Morocco An. Edaf. Agrobiot. 8 537558.Google Scholar
Harris, C. R., 1972 Factors influencing effectiveness of soil insecticides Annu. Rev. Entomol. 17 177198.CrossRefGoogle Scholar
Homeyer, B., 1971 Nemacur, a highly effective nematocide for protective and curative application Pflanzenschutz-Nachrichten Bayer 24 4868.Google Scholar
Interatomic Distances Supplement, 1965 Chem. Society, London S1S23.Google Scholar
Mortland, M. M. and Raman, K. V., 1968 Surface acidity of smectites in relation to hydration, exchangeable cation and structure Clays & Clay Minerals 16 393398.CrossRefGoogle Scholar
Saltzman, S. and Yariv, S., 1976 Infrared and X-ray study of parathion montmorillonite sorption complexes Soil Sci. Soc. Amer. J. 40 3438.CrossRefGoogle Scholar
Sanchez Camazano, M. and Sanchez Martin, M., 1980 Interaction of phosmet with montmorillonite Soil Sci. 129 115118.CrossRefGoogle Scholar
Sanchez Camazano, M. and Sanchez Martin, M., 1980 Interactión de pesticidas organofosforados con montmorillonita. III. Dimetoato An. Edaf. Agrobiol. 39 659670.Google Scholar
Sanchez Martin, M. and Sanchez Camazano, M., 1978 Interactión de pesticidas organofosforados con montmorillonita. II. Sumition Centro de Edafologia y Biologia Aplicada del C.S.I.C., Salamanca, Anuario, 1977, Vol. 4 223235.Google Scholar
Sanchez Martin, M. and Sanchez Camazano, M., 1980 Interactión de fosdrin con montmorillonita Clay Miner. 15 1523.CrossRefGoogle Scholar