Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-20T00:25:09.033Z Has data issue: false hasContentIssue false

Interaction Between Lu Cations and 2:1 Aluminosilicates under Hydrothermal Treatment

Published online by Cambridge University Press:  01 January 2024

María D. Alba*
Affiliation:
Instituto Ciencia de los Materiales de Sevilla, Departamento de Química Inorgánica, CSIC, Universidad de Sevilla, Avenida Américo Vespucio, s/n 41092 Seville, Spain
Pablo Chain
Affiliation:
Instituto Ciencia de los Materiales de Sevilla, Departamento de Química Inorgánica, CSIC, Universidad de Sevilla, Avenida Américo Vespucio, s/n 41092 Seville, Spain
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Smectites are considered to be an important component in backfill barriers due to their marked swelling and high cation exchange capacity. Both properties are affected considerably when these clays transform under natural conditions. However, we have recently described a chemical interaction between high-activity radionuclide simulators and smectites which could prove to be effective at immobilizing radionuclides definitively. Investigating the efficiency of this mechanism, independent of bentonite ageing, is a challenge. For this purpose, the reactivity shown by a non-expandable layered aluminosilicate, muscovite, has been compared to that shown by an expandable one, beidellite. Both samples were treated hydrothermally with a solution of lutetium nitrate, and the transformations were studied by X-ray diffraction, nuclear magnetic resonance and scanning electron microscopy/energy dispersive X-ray analysis. Lutetium cations react with the silicon framework of both 2:1 layered aluminosilicates under hydrothermal conditions, and new phases, lutetium disilicate, kaolinite, boehmite and natrosilite are generated. The results demonstrate that the efficiency of the chemical mechanism is not determined by the swelling and the cation exchange capacity of 2:1 layered aluminosilicates. Thus, the rare earth disilicate formation might account for the success of the clay barrier, once bentonite has lost its swelling and cation exchange capacity.

Type
Research Article
Copyright
Copyright © Clay Minerals Society 2005

References

Alba, M.D. Becerro, A.I. Castro, M.A. and Perdigön, A.C., (2001) Hydrothermal reactivity of Lu-saturated smectites: Part I. A long-range order study American Mineralogist 86 115123 10.2138/am-2001-0112.Google Scholar
Allen, C.C. and Wood, M.I., (1988) Bentonite in Nuclear Waste Disposal: A Review of Research in Support of the Basalt Waste Isolation Project Applied Clay Science 3 1130 10.1016/0169-1317(88)90003-8.Google Scholar
Ames, L.L. McGarrah, J.E. Walker, B.A. and Salter, P.F., (1982) Sorption of uranium and cesium by Hanford basalts and associated secondary smectite Chemical Geology 35 205225 10.1016/0009-2541(82)90002-X.Google Scholar
Ames, L.L. McGarrah, J.E. and Walker, B.A., (1983) Sorption of trace constituents from aqueous-solutions onto secondary minerals. 1. Uranium Clays and Clay Minerals 31 321324 10.1346/CCMN.1983.0310501.Google Scholar
Bailey, S.W., Brindley, G.W. and Brown, G., (1980) Structures of layer silicates Crystal Structures of Clay Minerals and their X-ray Identification London Mineralogical Society 1123.Google Scholar
Bauer, A. Schäfer, T. Dohrmann, R. Hoffmann, H. and Kim, J.J., (2001) Smectite stability in acid salt solutions and the fate of Eu, Th and U in solution Clay Minerals 36 93103 10.1180/000985501547376.Google Scholar
Becerro, A.I., (1997) Desarrollo de un sistema modelo de análisis estructural de la reactividad química de compuestos de silicio 2D y 3D aplicado a la formación de Lu2Si207 .Google Scholar
Borovec, Z., (1981) The adsorption of uranyl species by fine clays Chemical Geology 32 4558 10.1016/0009-2541(81)90127-3.Google Scholar
Chisholm-Brause, C. Conradson, S.D. Buscher, C.T. Eller, P.G. and Morris, D.E., (1994) Speciation of uranyl sorbed at multiple binding-sites on montmorillonite Geochimica et Cosmochimica Acta 58 3625 10.1016/0016-7037(94)90154-6.Google Scholar
Cuadros, J. and Linares, J., (1996) Experimental kinetic study of the smectite-illite transformation Geochimica et Cosmochimica Acta 60 439453 10.1016/0016-7037(95)00407-6.Google Scholar
Dent, A.J. Ramsay, J.D. and Swanton, S.W., (1992) An EXAFS study of uranylion in solution and sorbed onto silica and montmorillonite clay colloids Journal of Colloid and Interface Science 150 4560 10.1016/0021-9797(92)90267-P.Google Scholar
Eberl, D.D. and Srodon, J., (1988) Ostwald ripening and interparticle-diffraction effects for illite crystals American Mineralogist 73 13351345.Google Scholar
Eberl, D.D. Velde, B. and McCormick, T., (1993) Synthesis of illite-smectite from smectite at earth surface temperatures and high pH Clay Minerals 28 4960 10.1180/claymin.1993.028.1.06.Google Scholar
Heimann, R.B., (1993) Bronsted acidification observed during hydrothermal treatment of a calcium montmorillonite Clays and Clay Minerals 41 718725 10.1346/CCMN.1993.0410610.Google Scholar
Herrero, C.P. Sanz, J. and Serratosa, J.M., (1985) Si, Al distribution in micas — analysis by high-resolution Si-29 NMR-spectroscopy Journal of Physics C: Solid State Physics 18 1322 10.1088/0022-3719/18/1/009.Google Scholar
Inoue, A. Kohyama, N. Kitagawa, R. and Watanabe, T., (1987) Chemical and morphological evidence for the conversion of smectite to illite Clays and Clay Minerals 35 111120 10.1346/CCMN.1987.0350203.Google Scholar
Jennings, S. and Thompson, G.R., (1986) Diagenesis of Plio-Pleistocene sediments of the Colorado River Delta, southern California Journal of Sedimentary Petrology 56 8998.Google Scholar
Lippmaa, E. Magi, M. Samoson, A. Engelhardt, G. and Grimmer, A.R., (1980) Structural studies of silicates by solid-state high-resolution Si-29 NMR Journal of the American Chemical Society 102 48894893 10.1021/ja00535a008.Google Scholar
Mackenzie, K.J.D. and Smith, M.E., (2002) Multinuclear Solid-State NMR of Inorganic Materials Amsterdam Pergamon.Google Scholar
Mackenzie, K.J.D. Brown, I.W.M. Cardile, C.M. and Meinhold, R.H., (1987) The thermal reaction of muscovite studied by high-resolution solid-state 29-Si and 27-A1 NMR Journal of Materials Science 22 26452654 10.1007/BF01082158.Google Scholar
Martaza, M.G., (1989) A nuclear magnetic resonance investigation of the structure of some alkali silicates glasses .Google Scholar
Mather, J.D. Chapman, N.A. Black, J.H. and Lintern, B.C., (1982) The geological disposal of high-level radioactive waste — a review of the Institute of Geological Sciences Research programme Nuclear Energy 21 167173.Google Scholar
Meunier, A. Velde, B. and Griffault, V., (1998) The reactivity of bentonites: a review. An application to clay barrier stability for nuclear waste storage Clay Minerals 33 187196 10.1180/000985598545462.Google Scholar
Miller, S.E. Heath, G.R. and Gonzalez, R.D., (1982) Effects of temperature on the sorption of lanthanides by montmorillonite Clays and Clay Minerals 30 111122 10.1346/CCMN.1982.0300205.Google Scholar
Morris, D.E. Chisholm-Brause, C.J. Barr, M.E. Conradson, S.D. and Eller, P.G., (1994) Optical spectroscopic studies of the sorption of UO2(2+) species on a reference smectite Geochimca et Cosmochimica Acta 58 36133623 10.1016/0016-7037(94)90153-8.Google Scholar
Nadeau, P.H. Wilson, M.J. McHardy, W.J. and Tait, J.M., (1984) Interstratified clays as fundamental particles Science 225 923925 10.1126/science.225.4665.923.Google Scholar
Oades, J.M., (1984) Interactions of polycations of aluminum and iron with clays Clays and Clay Minerals 32 4957 10.1346/CCMN.1984.0320107.Google Scholar
Perdigón, A.C., (2002) Estudio del sistema saponita/Lu(NO3)3/H2O en condiciones hidrotérmicas .Google Scholar
Pérez-Maqueda, L.A. Franco, F. Avilés, M.A. Poyato, J. and Pérez-Rodriguez, J.L., (2003) Effect of sonication on particle-size distribution in natural muscovite and biotite Clays and Clay Minerals 51 701708 10.1346/CMN.203.0510613.Google Scholar
Sanz, J. and Serratosa, J.M., (1984) Si-29 and Al-27 high-resolution MAS-NMR spectra of phyllosilicates Journal of the American Chemical Society 106 47904793 10.1021/ja00329a024.Google Scholar
Sanz, J. and Serratosa, J.M., (1984) Distinction of tetrahed-rally and octahedrally coordinated Al in phyllosilicates by NMR-spectroscopy Clay Minerals 19 113115 10.1180/claymin.1984.019.1.13.Google Scholar
Savage, D. and Chapman, N.A., (1982) Hydrothermal behaviour of simulated waste glass- and waste-rock interaction under repository conditions Chemical Geology 36 5986 10.1016/0009-2541(82)90039-0.Google Scholar
Tsunashima, A. Brindley, G.W. and Bastovanov, M., (1981) Adsorption of uranium from solutions by montmorillonite-compositions and properties of uranyl montmorillonites Clays and Clay Minerals 29 1016 10.1346/CCMN.1981.0290102.Google Scholar
Weiss, C.A. Jr. Altaner, S.P. and Kirkpatrick, R.J., (1987) High-resolution 29Si NMR spectroscopy of 2:1 layer silicates: Correlations among chemical shift, structural distortions, and chemical variations American Mineralogist 72 935942.Google Scholar
Yamada, H. and Nakazawa, H., (1993) Isothermal treatments of regularly interstratified montmorillonite-beidellite at hydro-thermal conditions Clays and Clay Minerals 41 726730 10.1346/CCMN.1993.0410611.Google Scholar
Yau, Y.C. Peacor, D.R. and McDowell, S.D., (1987) Smectite-to-illite reactions in Saltan Sea shales: A transmission and analytical electron microscopy study Journal of Sedimentary Petrology 57 335342.Google Scholar
Ylagan, R.F. Altaner, S.P. and Pozzuoli, A., (2000) Reaction mechanisms of smectite illitization associated with hydro-thermal alteration from Ponza Island, Italy Clays and Clay Minerals 48 610631 10.1346/CCMN.2000.0480603.Google Scholar