Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T15:37:48.118Z Has data issue: false hasContentIssue false

Inheritance vs. neoformation of kaolinite during lateritic soil formation: A case study in the middle Amazon basin

Published online by Cambridge University Press:  01 January 2024

Etienne Balan*
Affiliation:
IRD-UMR 161 CEREGE, Europole Méditerranéen de l'Arbois BP 80, 13545 Aix-en-Provence cedex, France Institut de Minéralogie et Physique des Milieux Condensés (IMPMC), UMR CNRS 7590, Université Paris VI, Université Paris VII, IPGP, 4 Place Jussieu, 75252 Paris Cedex 05, France
Emmanuel Fritsch
Affiliation:
IRD-UMR 161 CEREGE, Europole Méditerranéen de l'Arbois BP 80, 13545 Aix-en-Provence cedex, France Institut de Minéralogie et Physique des Milieux Condensés (IMPMC), UMR CNRS 7590, Université Paris VI, Université Paris VII, IPGP, 4 Place Jussieu, 75252 Paris Cedex 05, France
Thierry Allard
Affiliation:
Institut de Minéralogie et Physique des Milieux Condensés (IMPMC), UMR CNRS 7590, Université Paris VI, Université Paris VII, IPGP, 4 Place Jussieu, 75252 Paris Cedex 05, France
Georges Calas
Affiliation:
Institut de Minéralogie et Physique des Milieux Condensés (IMPMC), UMR CNRS 7590, Université Paris VI, Université Paris VII, IPGP, 4 Place Jussieu, 75252 Paris Cedex 05, France
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The tropical weathering of sedimentary kaolin deposits from the plateaux surrounding Manaus (Alter do Chao formation, Amazon basin, Brazil) leads to the in situ formation of thick kaolinitic soils. The structural changes of kaolinite have been investigated quantitatively by infrared spectroscopy and electron paramagnetic resonance. Both techniques consistently show that each sample contains two types of kaolinite in various proportions. The progressive decrease in kaolinite order from the bottom to the top of the profile results from the gradual replacement of an old population of well-ordered kaolinite, typical of the underlying sedimentary kaolin, by a more recent generation of poorly ordered soil kaolinite. The vertical pattern of kaolinite replacement differs from that of the transformation of Fe oxides and oxyhydroxides previously observed in the same profile. The inherited fraction of well-ordered kaolinite ranges from 60% at a depth of 9 m to 30% in the upper levels of the soil. The persistence of sedimentary kaolinite in the upper horizons suggests that the rate of kaolinite transformation is relatively slow at the time scale of lateritic soil formation. Kaolinite inheritance unlocks the lateritic record of past weathering conditions.

Type
Research Article
Copyright
Copyright © 2007, The Clay Minerals Society

References

Artioli, G. Bellotto, M. Gualtieri, A. and Pavese, A., (1995) Nature of structural disorder in natural kaolinites: a new model based on computer simulation of powder diffraction data and electrostatic energy calculation Clays and Clay Minerals 43 438445 10.1346/CCMN.1995.0430407.CrossRefGoogle Scholar
Balan, E. Allard, T. Boizot, B. Morin, G. and Muller, J.-P., (1999) Structural Fe3+ in natural kaolinites: New insights from electron paramagnetic resonance spectra fitting at X and Q-band frequencies Clays and Clay Minerals 47 605616 10.1346/CCMN.1999.0470507.CrossRefGoogle Scholar
Balan, E. Allard, T. Boizot, B. Morin, G. and Muller, J.-P., (2000) Concentration of paramagnetic structural Fe(+III) in natural kaolinites Clays and Clay Minerals 48 439445 10.1346/CCMN.2000.0480404.CrossRefGoogle Scholar
Balan, E. Saitta, A.M. Mauri, F. and Calas, G., (2001) First-principles modeling of the infra-red spectrum of kaolinite American Mineralogist 86 13211330 10.2138/am-2001-11-1201.CrossRefGoogle Scholar
Balan, E. Allard, T. Fritsch, E. Sélo, M. Falguères, C. Chabaux, F. Pierret, M.-C. and Calas, G., (2005) Formation and evolution of lateritic profiles in the middle Amazon basin: Insights from radiation-induced defects in kaolinite Geochimica et Cosmochimica Acta 69 21932204 10.1016/j.gca.2004.10.028.CrossRefGoogle Scholar
Balan, E. Lazzeri, M. Saitta, A.M. Allard, T. Fuchs, Y. and Mauri, F., (2005) First-principles study of OH stretching modes in kaolinite, dickite and nacrite American Mineralogist 90 5060 10.2138/am.2005.1675.CrossRefGoogle Scholar
Bookin, A.S. Drits, V.A. Plançon, A. and Tchoubar, C., (1989) Stacking faults in kaolin-group minerals in the light of real structural features Clays and Clay Minerals 37 297307 10.1346/CCMN.1989.0370402.CrossRefGoogle Scholar
Brindley, G.W. Kao, C.-C. Harrison, J.L. Lipsicas, M. and Raythatha, R., (1986) Relation between structural disorder and other characteristics of kaolinites and dickites Clays and Clay Minerals 34 239249 10.1346/CCMN.1986.0340303.CrossRefGoogle Scholar
Delineau, T. Allard, T. Muller, J.-P. Barres, O. Yvon, J. and Cases, J.-M., (1994) FTIR reflectance vs. EPR studies of structural iron in kaolinites Clays and Clay Minerals 42 308320 10.1346/CCMN.1994.0420309.CrossRefGoogle Scholar
Farmer, V.C., (1974) The Infrared Spectra of Minerals London Mineralogical society 10.1180/mono-4.CrossRefGoogle Scholar
Fritsch, E. Montes-Lauar, C.R. Boulet, R. Melfi, A.J. Balan, E. and Magat, P.h., (2002) Lateritic and redoximorphic features in fractured soils and sediments of the Manaus plateaus, Brazil European Journal of Soil Science 53 203218 10.1046/j.1351-0754.2002.00448.x.CrossRefGoogle Scholar
Fritsch, E. Morin, G. Bedidi, A. Bonnin, D. Balan, E. Caquineau, S. and Calas, G., (2005) Transformation of haematite and Al-poor goethite to Al-rich goethite and associated yellowing in a ferralitic clay soil profile of the middle Amazon basin (Manaus, Brazil) European Journal of Soil Science 56 575588 10.1111/j.1365-2389.2005.00693.x.CrossRefGoogle Scholar
Giese, R.F. Jr. and Bailey, S.W., (1988) Kaolin minerals: structures and stabilities Hydrous Phyllosilicates (Exclusive of Micas) Washington, D.C Mineralogical Society of America 2966 10.1515/9781501508998-008.CrossRefGoogle Scholar
Giral-Kacmarcik, S. Savin, S.M. Nahon, D.B. Girard, J.-P. Lucas, Y. and Abel, L., (1998) Oxygen isotope geochemistry of kaolinite in laterite-forming processes, Manaus, Amazonas, Brazil Geochimica et Cosmochimica Acta 62 18651879 10.1016/S0016-7037(98)00103-3.CrossRefGoogle Scholar
Girard, J.-P. Freyssinet, P.h. and Chazot, G., (2000) Unraveling climatic changes from intraprofile variation in oxygen and hydrogen isotopic compositions of goethite and kaolinite in laterites: An integrated study from Yaou, French Guiana Geochimica et Cosmochimica Acta 64 409426 10.1016/S0016-7037(99)00299-9.CrossRefGoogle Scholar
Iriarte, I. Petit, S. Javier Huertas, F. Fiore, S. Grauby, O. Decarreau, A. and Linares, J., (2005) Synthesis of kaolinite with a high level of Fe3+ for Al substitution Clays and Clay Minerals 53 110 10.1346/CCMN.2005.0530101.CrossRefGoogle Scholar
Kogure, T. and Inoue, A., (2005) Determination of defect structure in kaolin minerals by high-resolution transmission electron microscopy American Mineralogist 90 8589 10.2138/am.2005.1603.CrossRefGoogle Scholar
Lucas, Y. Boulet, R. and Chauvel, A., (1990) In situ genesis of stone lines. Demonstrative example from a lateritic cover in Brazilian Amazonia Comptes Rendus de l’Académie des Sciences de Paris 311 713718.Google Scholar
Lucas, Y. Luizão, F.J. Chauvel, A. Rouiller, J. and Nahon, D., (1993) The relation between biological activity of the rain forest and mineral composition of soils Science 260 521523 10.1126/science.260.5107.521.CrossRefGoogle ScholarPubMed
Lucas, Y. Nahon, D. Cornu, S. and Eyrolle, F., (1996) Genèse et fonctionnement des sols en milieu équatorial Comptes Rendus de l’Académie des Sciences de Paris 322 116.Google Scholar
Mehra, O.P. and Jackson, M.L., (1960) Fe oxide removal from soil and clays by a dithionite-citrate system buffered with sodium carbonate Clays and Clay Minerals 7 317327 10.1346/CCMN.1958.0070122.CrossRefGoogle Scholar
Muller, J.P. Bocquier, G., Schultz, L.G. van Olphen, H. and Mumpton, F.A., (1987) Textural and mineralogical relationships betweeen ferruginous nodules and surrounding clayey matrices in a laterite from Cameroon Proceedings of the International Clay Conference, Denver, 1985 Bloomington, Indiana The Clay Minerals Society 186196.Google Scholar
Muller, J.P. and Calas, G., (1993) Mn2+-bearing kaolinites from lateritic weathering profiles: geochemical significance Geochimica et Cosmochimica Acta 57 10291037 10.1016/0016-7037(93)90038-X.CrossRefGoogle Scholar
Petit, S. and Decarreau, A., (1990) Hydrothermal (200°C) synthesis and crystal chemistry of iron-rich kaolinites Clay Minerals 25 181196 10.1180/claymin.1990.025.2.04.CrossRefGoogle Scholar
Plançon, A. Giese, R.F. Snyder, R. Drits, V.A. and Bookin, A.S., (1989) Stacking faults in the kaolin-group minerals: The defect structure of kaolinite Clays and Clay Minerals 37 203210 10.1346/CCMN.1989.0370302.CrossRefGoogle Scholar
Prost, R. Damene, A. Huard, E. Driard, J. and Leydecker, J.P., (1989) Infrared study of structural OH in kaolinite, dickite, nacrite and poorly crystalline kaolinite at 5 to 600 K Clays and Clay Minerals 37 464468 10.1346/CCMN.1989.0370511.CrossRefGoogle Scholar
Stone, W.E.E. and Torres-Sanchez, R.M., (1988) Nuclear magnetic resonance spectroscopy applied to minerals. Part 6. Structural iron in kaolinites as viewed by proton magnetic resonance Journal of the Chemical Society, Faraday Transactions I 84 117132 10.1039/f19888400117.CrossRefGoogle Scholar
Tardy, Y., (1993) Pétrologie des Latérites et des Sols Tropicaux Paris Masson.Google Scholar
Tardy, Y. and Roquin, C., (1998) Dérive des Continents. Paléoclimats et Altérations Tropicales Orléans, France BRGM 469 pp.Google Scholar
Thiry, M., (2000) Palaeoclimatic interpretation of clay minerals in marine deposits: an outlook from the continental origin Earth-Science Reviews 49 201221 10.1016/S0012-8252(99)00054-9.CrossRefGoogle Scholar
Varajão, AFDC Gilkes, R.J. and Hart, R.D., (2001) The relationships between kaolinite crystal properties and the origin of materials for a brazilian kaolin deposit Clays and Clay Minerals 49 4459 10.1346/CCMN.2001.0490104.CrossRefGoogle Scholar