Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-19T07:29:03.687Z Has data issue: false hasContentIssue false

Influence of Sulfate on Fe-Oxide Formation: Comparisons with a Stream Receiving Acid Mine Drainage

Published online by Cambridge University Press:  02 April 2024

K. S. Brady*
Affiliation:
Department of Agronomy, The Ohio State University, Columbus, Ohio 43210
J. M. Bigham
Affiliation:
Department of Agronomy, The Ohio State University, Columbus, Ohio 43210
W. F. Jaynes
Affiliation:
Department of Agronomy, The Ohio State University, Columbus, Ohio 43210
T. J. Logan
Affiliation:
Department of Agronomy, The Ohio State University, Columbus, Ohio 43210
*
2Present address: Tennessee Valley Authority, T-218, NFDC, Muscle Shoals, Alabama 35660.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

An ochreous precipitate isolated from a stream receiving acid-sulfate mine drainage was found to consist primarily of goethite and lesser amounts of ferrihydrite-like materials. The Fe-oxide fraction, including goethite, was almost totally soluble in acid ammonium oxalate. Similar materials were produced in the laboratory by hydrolysis of ferric nitrate solutions containing 250 to 2000 μg/ml sulfate as Na2SO4. Initial precipitates of natrojarosite transformed to Fe-oxides upon aging for 30 days at pH 6.0. The proportion of goethite in the final products decreased with increasing sulfate (SO4/Fe = 0.2 to 1.8) in the initial hydrolysis solutions; only ferrihydrite-like materials were produced at SO4/Fe ratios > 1.5. Variations in SO4/Fe solution ratios also produced systematic changes in the color (10R to 7.5YR) and surface areas (49 to 310 m2/g) of the dried precipitates, even though total S contents were relatively constant at 2.5 to 4.0%.

Type
Research Article
Copyright
Copyright © 1986, The Clay Minerals Society

Footnotes

1

Journal article No. 131-85.

References

Brady, K., 1982 Iron precipitates from acid coal mine drainage in southeasern Ohio: origin, occurrence and regional significance Ohio Ph.D. thesis, Ohio State Univ., Columbus.Google Scholar
Brown, G., Brindley, G. W. and Brown, G., 1980 Associated minerals Crystal Structures of Clay Minerals and Their X-ray Identification London Mineralogical Society 361410.CrossRefGoogle Scholar
Campbell, A. and Schwertmann, U., 1984 Iron oxide mineralogy of placic horizons J. Soil Sci. 35 569582.CrossRefGoogle Scholar
Carlson, L. and Schwertmann, U., 1980 Natural occurrence of feroxyhite (δ′-FeOOH) Clays & Clay Minerals 28 272280.CrossRefGoogle Scholar
Carlson, L. and Schwertmann, U., 1981 Natural ferrihydrites in surface deposits from Finland and their association with silica Geochim. Cosmochim. Acta 45 421429.CrossRefGoogle Scholar
Chukhrov, F. V., Zvyagin, B. B., Ermilova, L. P., Gorshkov, A. I. and Serratosa, J. M., 1973 New data on iron oxides in the weathering zone Proc. Int. Clay Conf., Madrid, 1972 Madrid Div. Ciencias C.S.I.C 397404.Google Scholar
Chukhrov, F. V., Zvyagin, B. B., Gorshkov, A. I., Yermilova, L. P., Korovuskov, V. V., Rudnitskaya, Ye S and Yakubovskaya, N. Y., 1977 Feroxyhyte, a new modification of FeOOH Int. Geol. Rev. 19 873890.CrossRefGoogle Scholar
Crosby, S. A., Glasson, D. R., Cuttler, A. H., Butler, I., Turner, D. R., Whitfield, M. and Millward, G. E., 1983 Surface areas and porosités of Fe(III)- and Fe(II)-derived oxyhy-droxides Environ. Sci. Technol. 17 709713.CrossRefGoogle Scholar
Dousma, J., den Ottelander, D. and de Bruyn, P. L., 1979 The influence of sulfate ions on the formation of iron(III) oxides J. Inorg. Nucl. Chem. 41 15651568.CrossRefGoogle Scholar
Fenchel, T. and Blackburn, T. H., 1979 Bacteria and Mineral Cycling New York Academic Press 142144.Google Scholar
Fischer, W. R., Schlichting, E. and Schwertmann, U., 1972 Die Wirkung von zweiwertigem Eisen auf Lösung und Umwandlung von Eisen(III)-hydroxiden Pseudogley and Gley Weinheim/Bergstr. Verlag Chemie 3744.Google Scholar
Harrison, J. B. and Berkheiser, V. E., 1982 Anion interactions with freshly prepared hydrous iron oxides Clays & Clay Minerals 30 97102.CrossRefGoogle Scholar
Heaney, S. I. and Davison, W., 1977 The determination of ferrous iron in natural waters with 2,2′ bipyridyl Limn. Oceanogr. 22 753760.CrossRefGoogle Scholar
Lazaroff, N., 1963 Sulfate requirement for iron oxidation by Thiobacillus ferrooxidans J. Bad. 85 7883.Google ScholarPubMed
Lazaroff, N., Sigal, W. and Wasserman, A., 1982 Iron oxidation and precipitation of ferric hydroxysulfates by resting Thiobacillus ferrooxidans cells Appl. Environ. Microbiol. 43 924938.CrossRefGoogle ScholarPubMed
Mehra, O. P., Jackson, M. L. and Swineford, A., 1960 Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate Clays and Clay Minerals, Proc. 7th Natl. Conf, Washington, D.C., 1958 New York Pergamon Press 317327.Google Scholar
Nordstrom, D. K., Kittrick, J. A., Fanning, D. S. and Hosner, L. R., 1982 Aqueous pyrite oxidation and the consequent formation of secondary iron minerals Acid Sulfate Weathering Wisconsin Soil Sci. Soc. Amer., Madison 3756.Google Scholar
Robinson, G. D., 1981 Adsorption of Cu, Zn and Pb near sulfide deposits by hydrous manganese-iron oxide coatings on stream alluvium Chem. Geol. 33 6579.CrossRefGoogle Scholar
Russell, J. D., 1979 Infrared spectroscopy of ferrihydrite: evidence for the presence of structural hydroxyl groups Clay Miner. 14 190214.CrossRefGoogle Scholar
Schulze, D. G., 1981 Identification of soil iron oxide minerals by differential X-ray diffraction Soil Sci. Soc. Amer. J. 45 437440.CrossRefGoogle Scholar
Schwertmann, U., 1964 Differenzierung der Eisenoxide des Boden durch photochemische Extraktion mit saurer Ammoniumoxalat-Lösung Z. Pfanzenern. Düng. Bodenkunde 105 194202.CrossRefGoogle Scholar
Schwertmann, U. and Fischer, W. R., 1973 Natural “amorphous” ferric hydroxide Geoderma 10 237247.CrossRefGoogle Scholar
Schwertmann, U., Schulze, D. G. and Murad, E., 1982 Identification of ferrihydrite in soils by dissolution kinetics, differential X-ray diffraction, and Mössbauer spectroscopy Soil Sci. Soc. Amer. J. 46 869875.CrossRefGoogle Scholar
Singer, P. C. and Stumm, W., 1970 Acid mine drainage: the rate determining step Science 197 11211123.CrossRefGoogle Scholar
Stumm, W. and Morgan, J. J., 1981 Aquatic Chemistry 2nd New York Wiley.Google Scholar
Towe, K. M. and Bradley, W. F., 1967 Mineralogical constitution of colloidal “hydrous ferric oxides” J. Colloid Interface Sci. 24 384392.CrossRefGoogle Scholar
Vuorinen, A., Hiltunen, P., Hsu, J. C. and Tuovinen, O. H., 1983 Solubilization and speciation of iron during pyrite oxidation by Thiobacillus ferrooxidans Geomicrobiol. J. 3 95120.CrossRefGoogle Scholar