Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-22T12:07:18.525Z Has data issue: false hasContentIssue false

Influence of Inorganic and Organic Ligands on the Formation of Aluminum Hydroxides and Oxyhydroxides

Published online by Cambridge University Press:  02 April 2024

A. Violante*
Affiliation:
Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan S7N 0W0, Canada
P. M. Huang
Affiliation:
Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan S7N 0W0, Canada
*
1Institute of Agricultural Chemistry, University of Naples, Portici, Italy.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Hydroxide and oxyhydroxide products of aluminum were formed at room temperature at an initial Al concentration of 2 × 10-3 M, pH 8.2, and at varying concentrations of organic and inorganic ligands commonly found in nature. The effectiveness of the ligands in promoting the formation of noncrystalline products over crystalline Al(OH)3 polymorphs was found to be in the following order: phthalate ≅ succinate < glutamate < aspartate < oxalate < silicate ≅ fluoride < phosphate < salicylate ≅ malate < tannate < citrate < tartrate. The lowest ligand/Al molar ratio at which the production of Al hydroxides or oxyhydroxides was inhibited ranged from 0.02 to 15. Above critical ligand/Al ratios, crystalline products were inhibited and ligands coprecipitated with noncrystalline products which remained unchanged for at least 5 months. Polydentate and large ligands generally were more inhibitive than those with fewer functional groups or of smaller size.

The perturbing ligands promoted and stabilized the formation of pseudoboehmite over crystalline Al(OH)3 polymorphs in the following sequence: chloride < sulfate < phthalate ≅ succinate < glutamate < silicate < aspartate < phosphate < salicylate ≅ malate < tannate < citrate < tartrate. The optimal range of the ligand/Al molar ratios for the formation of pseudoboehmite varied, for example, from 0.005–0.015 for tartrate to 600–1000 for chloride. Pseudoboehmite was not formed in the presence of fluoride.

Резюме

Резюме

Гидроокисные и оксигидроокисные продукты алюминия формировались при комнатной температуре, начальной концентрации Al равной 2 × 10-3 М, pH равным 8,2 и различных концентрациях органических и неорганических лигандов, обычно находящихся в природе. Эффективность лигандов в способствовании образованию некристаллических продуктов предпочтительно полиморфом А1(ОН)3 находилась в следующем порядке: фталат ≅ сукцинат < глутамат < аспартат < оксалат < силикат ≅ фторид < фосфат < салицилат ≅ малат < таннат < цитрат < тартрат. Наиболее низкая величина молярного отнощения лиганд/Аl, при которой задерживалось образование гидроокисей или оксигидроокисей Al, находилась в диапазоне от 0,02 до 15. Выше критических величин отношений лиганд/Аl, кристаллические продукты не образовывались, а лиганды осаждались вместе с некристаллическими продуктами, которые оставались неизмененными в течение не менее, чем 5 месяцев. Полидентат и большие лиганды имели большую способность задерживания, чем лиганды, содержащие меньшее количества функциональных групп или лиганды меньших размеров. Возмущающие лиганды способствовали и стабилизировали формирование скорее псевдобемита, чем кристаллических полиморфов Аl(ОН)3 в следующем порядке: хлорид < сульфат < фталат ≅ сукцинат < глутамат < силикат < аспартат < фасфат < салицилат ≅ малат < таннат < цитрат < тартрат.

Оптимальный диапазон величин молярных отнощений лиганд/Аl для образования псевдобемита изменялся, например, от 0,005–0,015 для тартрата до 600–1000 для хлорида. Псевдобемит не образовывался в присутствии фторида. [E.G.]

Resümee

Resümee

Hydroxid- und Oxyhydroxid-Verbindungen von Aluminium wurden bei Raumtemperatur und mit einer ursprünglichen Al-Konzentration von 2 × 10-3 m, bei pH 8,2 und mit verschiedenen Konzentrationen von organischen und anorganischen Liganden, die in der Natur üblich sind, gebildet. Die Wirksamkeit der Liganden bei der Förderung der Bildung von nichtkristallinen Produkten gegenüber kristallinen polymorphen A1(OH)3-Modifikationen geht in folgender Reihenfolge: Phtalat ≅ Succinat < Glutamat < Asparat < Oxalat < Silikat ≅ Fluorid < Phosphat < Salicylat ≅ Malat < Tannat < Citrat < Tartrat. Das niedrigste Ligand/Al-Molverhältnis, bei dem die Entstehung von Al-Hydroxiden oder -Oxyhydroxiden verhindert wurde, liegt bei 0,02–15. Oberhalb der kritischen Ligand/Al-Verhältnisse wurde die Bildung kristalliner Verbindungen verhindert und die Liganden fielen mit nichtkristallinen Produkten zusammen aus, die über mindestens 5 Monate unverändert blieben. Polydentat und große Liganden wirkten sich im allgemeinen mehr verhindernd aus als solche, mit weniger funktionellen Gruppen oder mit geringer Größe.

Die störenden Liganden förderten und stabilisierten die Bildung von Pseudoboehmit gegenüber kristallinen polymorphen Al(OH)3-Modifikationen in der folgenden Reihenfolge: Chlorid < Sulfat < Phtalat ≅ Succinat < Glutamat < Silikat < Asperat < Phosphat < Salicylat ≅ Malat < Tannat < Citrat < Tartrat. Der optimale Bereich der Ligand/Al-Molverhältnisse für die Bildung von Pseudoboehmit variierte, z.B. von 0,005–0,015 für Tartrat bis 600–1000 für Chlorid. Pseudoboehmit wurde in Gegenwart von Fluorit nicht gebildet. [U.W.]

Résumé

Résumé

Des produits d'aluminium hydroxide et oxyhydroxide ont été formés à une concentration initiale d'Al de 2 × 10-3 M, au pH 8,2 et à des concentrations variées de ligands organiques et inorganiques trouvés communément dans la nature. On a trouvé que l'efficacité des ligands à promouvoir la formation de produits non-cristallins plutôt que des polymorphes Al(OH)3 cristallins était dans l'ordre suivant: phthalate ≅ succinate < glutamate < aspartate < oxalate < silicate ≅ fluoride < phosphate < salicylate ≅ malate < tannate < citrate < tartrate. La proportion molaire ligand/Al la plus basse à laquelle la production d'hydroxides Al ou d'hydroxides Al a été inhibée s’étendait de 0,02 à 15. Au dessus des proportions ligand/Al critiques, les produits cristallins étaient inhibés et les ligands ont coprécipite avec des produits non-cristallins qui sont restés inchangés pendant au moins 5 mois. Les ligands polydentates ou larges étaient généralement plus inhibants que ceux avec moins de groupes fonctionnels ou de plus petite taille.

Les ligands perturbants ont promu et stabilisé la formation de pseudoboéhmite relativement aux polymorphes cristallins Al(OH)3 selon la séquence suivante: chloride < sulphate < phthalate ≅ succinate < glutamate < silicate < aspartate < phosphate < salicylate ≅ malate < tannate < citrate < tartrate. L’étendue optimale des proportions molaires ligand/Al pour la formation de pseudoboéhmite a varié, par exemple, de 0,005–0,015 pour la tartrate à 600–1000 pour la chloride. La pseudoboéhmite n'a pas été formée en la présence de fluoride. [D.J.]

Type
Research Article
Copyright
Copyright © 1985, The Clay Minerals Society

References

Aldcroft, D., Bye, G. C. and Hughes, C. A., 1969 Crystalline process in aluminum hydroxide gels. IV. Factors influencing the formation of the crystalline trihydroxides J. Appl. Chem 19 167172.CrossRefGoogle Scholar
Bye, G. C. and Robinson, J. G., 1964 Crystallization process in aluminum hydroxide gels Kolloid Z 198 5360.CrossRefGoogle Scholar
Chesworth, W., 1972 The stability of gibbsite and boehmite at the surface of the earth Clays & Clay Minerals 20 369374.CrossRefGoogle Scholar
Cornell, R. M. and Schwertmann, U., 1979 The influence of organic anions on the crystallization of ferrihydrite Clays & Clay Minerals 27 402410.CrossRefGoogle Scholar
de Villiers, J. M., 1969 Pedosesquioxides—composition and colloidal interactions in soil genesis during the Quaternary Soil Sci 107 454461.CrossRefGoogle Scholar
Earl, K.D., Syers, J.K. and McLaughlin, J.R., 1979 Origin of the effect of citrate, tartrate and acetate on phosphate sorption by soils and synthetic gels Soil Sci. Soc. Amer. J 43 674678.CrossRefGoogle Scholar
Hsu, P. H., 1967 Effect of salts on the formation of bayerite versus pseudoboehmite Soil Sci 103 101110.CrossRefGoogle Scholar
Hsu, P. H. and Nicolas, J., 1973 Effect of sulfate on the crystallization of aluminum hydroxide from aging hydroxy-aluminum solutions Proc. 3rd Int. Congr. on Studies of Bauxite and Aluminum Oxides-Hydroxides, Nice, France, 1973 613620.Google Scholar
Hsu, P. H., Dixon, J. B. and Weed, S. B., 1977 Aluminum hydroxides and oxyhydroxides Minerals in Soil Environments 99143.Google Scholar
Hsu, P. H., 1979 Effect of phosphate and silicate on the crystallization of gibbsite from OH-Al solutions Soil Sci 127 219226.CrossRefGoogle Scholar
Hsu, P. H. and Bates, T. F., 1964 Formation of X-ray amorphous and crystalline aluminum hydroxides Mineral. Mag 33 749768.Google Scholar
Huang, P. M. and Jackson, M. L., 1966 Fluoride interaction with clays in relation to third buffer range Nature (London) 211 779780.CrossRefGoogle Scholar
Huang, P. M. and Singh, M., 1985 Aluminum and the fate of nutrients and toxic substances in terrestrial and freshwater environments Encyclopedia of Systems and Control Oxford Pergamon Press.Google Scholar
Jackson, M. L., 1975 Soil Chemical Analysis—Advanced Course 2nd Madison, Wisconsin University of Wisconsin.Google Scholar
Keller, W. D., 1964 The origin of high alumina clay minerals. A review Clays & Clay Minerals 12 129151.CrossRefGoogle Scholar
Kodama, H. and Schnitzer, M., 1980 Effect of fulvic acid on the crystallization of aluminum hydroxides Geoderma 24 195205.CrossRefGoogle Scholar
Kwong, N., Kee, K. F. and Huang, P. M., 1975 Influence of citric acid on the crystallization of aluminum hydroxides Clays & Clay Minerals 23 164165.CrossRefGoogle Scholar
Kwong, N., Kee, K. F. and Huang, P. M., 1977 Influence of citric acid on the hydrolytic reactions of aluminum Soil Sci. Soc. Amer. J 41 692697.CrossRefGoogle Scholar
Kwong, N., Kee, K. F., Huang, P. M., Mortland, M. M. and Farmer, V. C., 1979 Nature of hydrolytic products of aluminum as influenced by low molecular weight complexing organic acids Proc. Int. Clay Conf, Oxford, 1978 Amsterdam Elsevier 527536.Google Scholar
Kwong, N., Kee, K. F. and Huang, P. M., 1979 Surface reactivities of hydrolytic reaction products of aluminum formed in the presence of low molecular weight organic acids Soil Sci. Soc. Amer. J 43 11071113.CrossRefGoogle Scholar
Kwong, N., Kee, K. F. and Huang, P. M., 1979 The relative influence of low-molecular-weight, complexing organic acids on the hydrolysis and precipitation of aluminum Soil Sci 128 337342.CrossRefGoogle Scholar
Kwong, N., Kee, K. F. and Huang, P. M., 1981 Comparison of the influence of tannic acid and selected low molecular weight organic acids on precipitation products of aluminum Geoderma 26 179193.CrossRefGoogle Scholar
Lippens, B. C., Steggerda, J. J. and Linsens, B. G., 1970 Active alumina Physical and Chemical Aspects of Adsorbents and Catalysts New York Academic Press 171211.Google Scholar
Luciuk, G. M. and Huang, P. M., 1974 Effect of monosilicic acid on hydrolytic reactions of aluminum Soil Sci. Soc. Amer. Proc 38 235243.CrossRefGoogle Scholar
Parfitt, R. L., 1978 Anion adsorption by soils and soil materials Adv. Agron 30 150.Google Scholar
Ross, G.J. and Turner, R.C., 1971 Effect of different anions on the crystallization of aluminum hydroxide in partially neutralized aqueous aluminum salt systems Soil Sci. Soc. Amer. Proc 35 389392.CrossRefGoogle Scholar
Schwertmann, U., Mortland, M. M. and Farmer, V. C., 1979 Noncrystalline and accessory minerals Proc. Int. Clay Conf., Oxford, 1978 Amsterdam Elsevier 491499.Google Scholar
Sillen, L. G. and Martell, A. E., 1964 Stability constants of metal ion complexes Chem. Soc. London 17 390470.Google Scholar
Smith, R. W. and Hem, J. D. (1972) Effect of aging on aluminum hydroxide complexes in dilute aqueous solutions: U.S. Geol. Surv. Water Supply Pap. 1827–D, 51 pp.Google Scholar
Souza-Santos, P., Valleijo-Freire, A. and Souza-Santos, H. L., 1953 Electron microscope studies on the aging of amorphous colloid aluminum hydroxide Kolloid Z 133 101107.CrossRefGoogle Scholar
Tettenhorst, R. and Hofmann, A., 1980 Crystal chemistry of boehmite Clays & Clay Minerals 28 373380.CrossRefGoogle Scholar
Turner, R. C. and Ross, G. J., 1969 Conditions in solution during the formation of gibbsite in dilute aluminum salt solutions. III. Hydroxyaluminum products of reactions during the neutralization of aluminum chloride solutions with sodium hydroxide Can. J. Soil Sci 49 389396.CrossRefGoogle Scholar
Violante, A., Jackson, M. L., Mortland, M. M. and Farmer, V. C., 1979 Crystallization of nordstrandite in citrate systems in the presence of mont-morillonite Proc. Int. Clay Conf., Oxford, 1978 Amsterdam Elsevier 517525.Google Scholar
Violante, A. and Jackson, M. L., 1981 Clay influence on the crystallization of aluminum hydroxide polymorphs in the presence of citrate, sulfate or chloride Geoderma 25 199214.CrossRefGoogle Scholar
Violante, A. and Violante, P., 1980 Influence of pH, concentration, and chelating power of organic anions on the synthesis of aluminum hydroxides and oxyhydroxides Clays & Clay Minerals 28 425434.CrossRefGoogle Scholar
Wada, K., Dixon, J. B. and Weed, S. B., 1977 Allophane and imogolite Minerals in Soil Environments 603638.Google Scholar
Wada, S. I., Eto, A. and Wada, K., 1979 Synthetic allophane and imogolite J. Soil Sci 30 347355.CrossRefGoogle Scholar
Wada, S. I. and Wada, K., 1980 Formation, composition and structure of hydroxy-aluminosilicate ions J. Soil Sci 31 457467.CrossRefGoogle Scholar
Wada, S. I. and Wada, K., 1981 Reactions between aluminate ions and orthosilicic acid in dilute, alkaline to neutral solutions Soil Sci 132 267273.CrossRefGoogle Scholar
Yoldas, B. E., 1973 Hydrolysis of aluminum alkoxides and bayerite conversion J. Appl. Chem. Biotechnol 23 803809.CrossRefGoogle Scholar