Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T07:16:50.221Z Has data issue: false hasContentIssue false

The Influence of Aluminum on Iron Oxides. XV. Al-for-Fe Substitution in Synthetic Lepidocrocite

Published online by Cambridge University Press:  02 April 2024

Udo Schwertmann
Affiliation:
Lehrstuhl für Bodenkunde, Technische Universität München, 8050 Freising-Weihenstephan, Federal Republic of Germany
Emilia Wolska
Affiliation:
Adam Mickiewicz Universität, Grunwaldska 6, 60780 Poznan, Poland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Lepidocrocite samples, γ-FeOOH, containing 0–10 mole % Al-for-Fe substitution were synthesized at 15°C and pH 8 by oxidizing mixed FeCl2-AlCl3 solutions. The unit-cell parameters a, b, and c were measured from step-counted X-ray powder diffractograms using seven lines and Si as an internal standard. With increasing Al substitution from 0 to 10 mole % the unit-cell edge lengths a, b, and c decreased regularly by 0.3, 0.8, and 0.6%, respectively. Furthermore, the crystals became smaller, but gained in thermal stability. Decrease in crystal size parallel to the y axis led to a significant increase of the OH-stretch vibration and a decrease of the out-of-plane OH-bending vibration due to a weakening of the hydrogen bond between the zig-zag layers in the structure.

Type
Research Article
Copyright
Copyright © 1990, The Clay Minerals Society

References

Carlson, L. and Schwertmann, U., 1989 The effect of CO2 and oxidation rate on the formation of goethite versus lep-idocrocite from an Fe(II) system Clay Miner .CrossRefGoogle Scholar
Childs, C. W. and Wilson, A. D., 1983 Iron oxide minerals in soils of the Ha’apai group, Kingdom of Tonga Aust. J. Soil Res. 21 489503.CrossRefGoogle Scholar
Fitzpatrick, R. W., Taylor, R. M., Schwertmann, U. and Childs, C. W., 1985 Occurrence and properties of lepi-docrocite in some soils of New Zealand, South Africa and Australia Aust. J. Soil Res. 23 543567.CrossRefGoogle Scholar
Harten, E. and Glemser, O., 1956 Ultrarotspektrosko-pische Bestimmung der Metall-Sauerstoff-Abstände in Hydroxyden, basischen Salzen und Salzhydraten A. Elektrochemie 60 746751.Google Scholar
Janik, L. M. and Raupach, M., 1977 An iterative, least-squares program to separate infrared adsorption spectra into their component bands CSIRO Div. Soils, Techn. Paper 35 137.Google Scholar
Klug, H. P. and Alexander, L. E., 1974 X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials New York Wiley.Google Scholar
Schulze, D. G. and Schwertmann, U., 1984 The influence of aluminium on iron oxides. X. Properties of Al-substi-tuted goethites Clay Miner. 19 521529.CrossRefGoogle Scholar
Schulze, D. G. and Schwertmann, U., 1987 The influence of aluminium on iron oxides. XIII. Properties of goethites synthesised in 0.3 M KOH at 25°C Clay Miner. 22 8392.CrossRefGoogle Scholar
Schwertmann, U., Cambier, P. and Murad, E., 1985 Properties of goethites of varying crystallinity Clays & Clay Minerals 33 369378.CrossRefGoogle Scholar
Schwertmann, U., Carlson, L. and Murad, E., 1987 Properties of iron oxides in two Finnish lakes in relation to the environment of their formation Clays & Clay Minerals 35 297304.CrossRefGoogle Scholar
Schwertmann, U. and Murad, E., 1989 The influence of aluminum on iron oxides. XIV. Al-substituted magnetites synthesized at ambient temperatures Clays & Clay Minerals .CrossRefGoogle Scholar
Stumm, W. and Lee, G. F., 1961 Oxygenation of ferrous iron Ind. Eng. Chem. 53 143146.CrossRefGoogle Scholar
Taylor, R. M. and Schwertmann, U., 1978 The influence of aluminum on iron oxides. I. The influence of Al on Fe oxide formation from the Fe(II) system Clays & Clay Minerals 26 373383.CrossRefGoogle Scholar
Taylor, R. M. and Schwertmann, U., 1980 The influence of aluminum on iron oxides. VII. Substitution of Al for Fe in synthetic lepidocrocite Clays & Clay Minerals 28 267271.CrossRefGoogle Scholar