Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-22T20:12:18.920Z Has data issue: false hasContentIssue false

The Influence of Aluminum on Iron Oxides. Part XVI: Hydroxyl and Aluminum Substitution in Synthetic Hematites

Published online by Cambridge University Press:  28 February 2024

Helge Stanjek
Affiliation:
Lehrstuhl für Bodenkunde der Technischen Universität München, D-8050 Freising-Weihenstephan, Germany
Udo Schwertmann
Affiliation:
Lehrstuhl für Bodenkunde der Technischen Universität München, D-8050 Freising-Weihenstephan, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Synthetic hematites with Al substitutions between 0 and 18 mol % were synthesized at different temperatures and water activities. The cell-edge lengths a for different synthesis conditions decreased linearly with increasing Al substitution. The regression lines, however, had different slopes and intercepts: the series with the highest synthesis temperature (1270 K) had the most negative slope. With increasing Al substitution, the hematites contained increasing amounts of non-surface water. Significant correlations were found between these chemically determined water contents and the deviations of the unit-cell parameters a, c, and V relative to the corresponding 1270 K regression lines. To explain the measured X-ray peak intensities, structural OH had to be included into the theoretical calculations. From intensity ratios normalized to I113, it is possible to determine the structural OH separately from the Al substitution, which can be assessed by the shift of the cell-edge lengths relative to the 1270 K regression lines. The incorporation of Al and OH into the hematite structure induces strain, which was quantified by X-ray diffraction.

Type
Research Article
Copyright
Copyright © 1992, The Clay Minerals Society

References

Anand, R. R. and Gilkes, R. J., 1987 The association of maghemite and corundum in Darling Range laterites, Western Australia Aust. J. Soil Res. 25 303311 10.1071/SR9870303.CrossRefGoogle Scholar
Barron, V., Rendon, J. L., Torrent, J. and Serna, C. J., 1984 Relation of infrared, crystallochemical, and morphological properties of Al-substituted hematites Clays & Clay Minerals 32 475479 10.1346/CCMN.1984.0320605.CrossRefGoogle Scholar
Beran, A., 1991 Trace hydrogen in Vemeuil-grown corundum and its colour varieties—An IR spectroscopic study Eur. J. Mineral. 3 971975 10.1127/ejm/3/6/0971.CrossRefGoogle Scholar
Blake, R. L., Hessevick, R. E., Zoltai, T. and Finger, L. W., 1966 Refinement of the hematite structure Amer. Mineral. 51 123129.Google Scholar
Bom, E. and Paul, G., 1979 Röntgenbeugung am Realkristall München Thieme Verlag.Google Scholar
Breithaupt, A., 1847 Handbueh der Mineralogie, Band III Dresden Amoldi.Google Scholar
Brill, R., 1932 Röntgenographische Untersuchungen an Eisenkatalysatoren fur die Ammoniak-Synthese Z. Elektrochemie 38 669673.Google Scholar
Cailliere, S., Gatineau, L. and Hénin, S., 1960 Préparation a basse temperature d’hématite alumineuse Comptes Rendus Acad. Sci. 250 36773679.Google Scholar
Carter, D. L., Heilman, M. D. and Gonzales, C. L., 1965 The ethylene glycol monoethyl ether (EGME) technique for determining soil-surface area Soil Sci. 100 409413 10.1097/00010694-196511000-00011.CrossRefGoogle Scholar
Catlow, C R A Comish, J., Hennesy, J. and Mackrodt, W. C., 1988 Atomistic simulation of defect structures and ion transport in α-Fe2O3 and α-Cr2O3 J. Amer. Ceram. Soc. 71 4249 10.1111/j.1151-2916.1988.tb05758.x.CrossRefGoogle Scholar
Farmer, V. C. and Farmer, V. C., 1974 The anhydrous oxide minerals The Infrared Spectra of Minerals London Mineralogical Society 10.1180/mono-4.CrossRefGoogle Scholar
Forestier, H. and Chaudron, G., 1925 Points de transformation des solutions solides d’alumine ou de sesquioxyde de chrome dans les sesquioxyde de fer Comptes rendus Acad. Sci. Paris 180 12641266.Google Scholar
Gregg, S. J., 1953 The production of active solids by thermal decomposition. Part I. Introduction J. Chem. Soc. IV 39403944 10.1039/jr9530003940.Google Scholar
Gregg, S. J. and Hill, K. J., 1953 The production of active solids by thermal decomposition. Part II. Ferric oxide J. Chem. Soc. IV 39453951 10.1039/jr9530003945.Google Scholar
Guinier, A., 1963 X-ray Diffraction in Crystals, Imperfect Crystals and Amorphous Bodies San Francisco Freeman and Company.Google Scholar
Helgeson, H. C., Delany, J. M., Nesbitt, H. W. and Bird, D. K., 1978 Summary and critique of the thermodynamic properties of rock-forming minerals Amer. J. Sci. 278A 1229.Google Scholar
Hill, R. J. and Madsen, I. C., 1986 The effect of profile step width on the determination of crystal structure parameters and estimated standard deviations by X-ray Rietveld analysis J. Appl. Crystall. 19 1018 10.1107/S0021889886090076.CrossRefGoogle Scholar
Hsu, P. H., 1963 Effect of initial pH, phosphate, and silicate on the determination of aluminum with aluminon Soil Sci. 96 230237 10.1097/00010694-196310000-00002.Google Scholar
Janik, L. M. and Raupach, M., 1977 An iterative, leastsquares program to separate infrared absorption spectra into their component bands CSIRO Div. of Soils Tech. Paper 35 137.Google Scholar
Klug, H. P. and Alexander, L. E., 1974 X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials New York J. Wiley and Sons.Google Scholar
Königsberger, J. and Reichenheim, O., 1906 Ueber die Elektrizitätsleitung einiger natürlich kristallisierter Oxyde and Sulfide und des Graphits N. Jb. Min. Geol. Pal. 1906 .Google Scholar
Kosmas, C. S., Franzmeier, D. P. and Schulze, D. G., 1986 Relationship among derivative spectroscopy, color, crystallite dimensions and A1 substitution of synthetic goethites and hematites Clays & Clay Minerals 34 625634 10.1346/CCMN.1986.0340602.Google Scholar
Koutler-Anderson, E., 1953 The sulfosalicylic method for iron determination and its use in certain soil analysis Ann. Roy. Agric. Sweden 20 297308.Google Scholar
Lindsay, W. L., 1979 Chemical Equilibria in Soils New York J. Wiley & Sons.Google Scholar
Mackrodt, W. C., Davey, R. J., Black, S. N. and Docherty, R., 1987 The morphology of α-Al2O3 and α-Fe2O3: The importance of surface relaxation J. Cryst. Growth 80 441446 10.1016/0022-0248(87)90093-5.CrossRefGoogle Scholar
Murad, E., 1984 High-precision determination of magnetic hyperfine fields by Mossbauer spectroscopy using an internal standard J. Phys. E. Sci. Instrum. 17 736737 10.1088/0022-3735/17/9/004.CrossRefGoogle Scholar
Okamoto, G., Furuichi, R. and Sato, N., 1967 Chemical reactivity and electrical conductivity of hydrous ferric oxide Electrochim. Acta 12 12871299 10.1016/0013-4686(67)80045-8.CrossRefGoogle Scholar
Passerini, L., 1930 Soluzione solide, isomorfismo e simmorfismo tra gli ossidi dei metalli trivalenti. I sistema: Al2O3-Cr2O3; Al2O3-Fe2O3: Cr2O3-Fe2O3 Gazz. Chim. Ital. 60 544558.Google Scholar
Perinet, G. and Lafont, R., 1972 Sur les parametres cristallographiques des hematites alumineuses Comptes Rendus Acad. Sci. Paris 275C 10211025.Google Scholar
Rochester, C. H. and Topham, S. A., 1979 Infrared study of surficial hydroxyl groups on haematite J. Chem. Soc., Faraday Trans. I75 10731088 10.1039/f19797501073.Google Scholar
Schulze, D. G., 1982 The identification of iron oxides by differential X-ray diffraction and the influence of aluminum substitution on the structure of goethite Ann Arbor, Michigan Technische Universitat Munchen, University Microfilms International.Google Scholar
Schwertmann, U., 1964 DifferenzierungderEisenoxidedes Bodens durch photochemische Extraktion mit saurer Ammoniumoxalat-Lösung Z. Pflanzenernähr. Bodenkde. 105 194202 10.1002/jpln.3591050303.Google Scholar
Schwertmann, U., 1984 Aluminiumsubstitution in pedogenen Eisenoxiden—eine Übersicht Z. Pflanzenernähr. Bodenkde. 147 385399 10.1002/jpln.19841470312.CrossRefGoogle Scholar
Schwertmann, U., 1988 Goethite and hematite formation in the presence of clay minerals and gibbsite at 25°C Soil Sci. Soc. Amer. J. 52 288291 10.2136/sssaj1988.03615995005200010052x.Google Scholar
Schwertmann, U., Fitzpatrick, R. W., Taylor, R. M. and Lewis, D. G., 1979 The influence of aluminium on iron oxides. Part II. Preparation and properties of Al-substituted hematites Clays & Clay Minerals 27 105112 10.1346/CCMN.1979.0270205.CrossRefGoogle Scholar
Stanjek, H., 1987 The formation of maghemite and hematite from lepidocrocite and goethite in a Cambisol from Corsica Z. Pflanzenernähr. Bodenkde. 150 314318 10.1002/jpln.19871500509.CrossRefGoogle Scholar
Stanjek, H., 1991 Aluminium- und Hydroxylsubstitution in synthetischen und natürlichen Hämatiten Maria Leidorf, Buch am Erlbach Technische Universität München.Google Scholar
von Steinwehr, H. E., 1967 Gitterkonstanten im System α-(Al,Fe,Cr)2O3 und ihr Abweichen von der Vegardregel Z. Kristallographie 125 377403 10.1524/zkri.1967.125.125.377.Google Scholar
Wefers, K., 1967 Phasenbeziehungen im System Al2O3-Fe2O3-H2O Erzmetall 20 1319.Google Scholar
Wolska, E., 1977 Die Bedeutung von Aluminiumspuren im Alterungsvorgang von amorphem Eisen(III)-hydroxid fur die Eliminierung der Goethitphase Monatshefte Chemie 108 819828 10.1007/BF00898046.Google Scholar
Wolska, E., 1981 The structure of hydrohematite Z. Kristallographie 154 6975.Google Scholar
Wolska, E. and Szajda, W., 1985 Structural and spectroscopic characteristics of synthetic hydrohematite J. Mater. Sci. 20 44074412 10.1007/BF00559329.Google Scholar