Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-22T15:17:29.742Z Has data issue: false hasContentIssue false

Incorporation of Fe in the interlayer of Na-bentonite via treatment with FeCl3 in acetone

Published online by Cambridge University Press:  01 January 2024

Andrea Komlósi
Affiliation:
Isotope Laboratory, Department of Colloid and Environmental Chemistry, University of Debrecen, Debrecen, 4010 PO Box 8, Hungary
Ernő Kuzmann
Affiliation:
Research Group for Nuclear Methods in Structural Chemistry, Hungarian Academy of Sciences, Eötvö s Loránd University, Pázmány P. s. 1/a, Budapest 1117, Hungary
Noémi M. Nagy*
Affiliation:
Isotope Laboratory, Department of Colloid and Environmental Chemistry, University of Debrecen, Debrecen, 4010 PO Box 8, Hungary
Zoltán Homonnay
Affiliation:
Research Group for Nuclear Methods in Structural Chemistry, Hungarian Academy of Sciences, Eötvö s Loránd University, Pázmány P. s. 1/a, Budapest 1117, Hungary
Shiro Kubuki
Affiliation:
Research Group for Nuclear Methods in Structural Chemistry, Hungarian Academy of Sciences, Eötvö s Loránd University, Pázmány P. s. 1/a, Budapest 1117, Hungary
József Kónya
Affiliation:
Isotope Laboratory, Department of Colloid and Environmental Chemistry, University of Debrecen, Debrecen, 4010 PO Box 8, Hungary
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The effect of FeCl3 in acetonic medium on the structure of Na-bentonite was studied using X-ray diffraction (XRD), 57Fe Mössbauer spectroscopy, X-ray fluorescence spectroscopy and infrared spectroscopy to describe the structure of the bentonite before and after treatment. In the samples treated with FeCl3, an increase in the basal spacing was found by XRD, while a new magnetically split component assigned to Fe3+ incorporated within the interlayer regions of montmorillonite showed up in the low-temperature Mössbauer spectra. The Mössbauer parameters observed were close to those of Fe oxyhydroxides, suggesting the presence of some kind of nanoparticles. These results show that the treatment with acetonic FeCl3 solution is an effective method for introducing Fe into montmorillonite in the form of Fe3+ accommodated in the interlayer region. The treated samples proved to be efficient Lewis catalysts in the acylation of aldehydes (benzaldehyde and 4-OH-benzaldehyde) by acetic acid anhydride.

Type
Research Article
Copyright
Copyright © 2007, The Clay Minerals Society

Footnotes

on leave from Ube National College of Technology, Japan

References

Aggarwal, Varinder K. Fonquerna, Silvia and Vennall, Graham P., (1998) Sc(OTf)3, an Efficient Catalyst for Formation and Deprotection of Geminal Diacetates (Acylals); Chemoselective Protection of Aldehydes in Presence of Ketones Synlett 1998 8 849850 10.1055/s-1998-1799.CrossRefGoogle Scholar
Ballini, R. Bordoni, M. Gosica, G. Maggi, R. and Sartori, G., (1998) Solvent free synthesis and deprotection of 1,1-diacetates over a commercially available zeolite Y as a reusable catalyst Tetrahedron Letters 39 75877590 10.1016/S0040-4039(98)01649-9.CrossRefGoogle Scholar
Bathia, B. Punniyamurthy, T. and Iqbal, J., (1993) Cobalt(II)-catalyzed reaction of aldehydes with acetic anhydride under an oxygen atmosphere: scope and mechanism Journal of Organic Chemistry 58 55185523 10.1021/jo00072a041.Google Scholar
Berry, F.J. Hayes, M.H.B. and Jones, S.L., (1986) Investigations of intercalation in inorganic solids with layered structures: Iron-57 Mössbauer spectroscopy studies of size fractionated and iron-exchanged montmorillonite clays Inorganica Chimica Acta 122 1924 10.1016/S0020-1693(00)81261-X.CrossRefGoogle Scholar
Bray, H.J. and Redfern, S.A.T., (2000) Influence of counterion species on the dehydroxylation of Ca2+-, Mg2+-, Na+-and K+-exchanged Wyoming montmorillonite Mineralogical Magazine 64 337346 10.1180/002646100549238.CrossRefGoogle Scholar
Chandra, K.L., Saravanan, P. and Singh, V.K. (2000) An efficient method for diacetylation of aldehydes. Synlett, 359360.Google Scholar
Deka, N. Kalita, D.J. Borah, R.T. and Sarma, J.C., (1997) Iodine as acetylation catalyst in the preparation of 1,1-diacetates from aldehydes Journal of Organic Chemistry 62 15631564 10.1021/jo961741e.CrossRefGoogle Scholar
Drame, H., (2005) Cation exchange and pillaring of smectites by aqueous Fe nitrate solutions Clays and Clay Minerals 53 335347 10.1346/CCMN.2005.0530402.CrossRefGoogle Scholar
Freeman, F. and Karchevski, E.M., (1977) Preparation and spectral properties of benzylidene diacetates Journal of Chemical Engineering Data 22 355357 10.1021/je60074a038.CrossRefGoogle Scholar
Green-Pedersen, H. and Pind, N., (2000) Preparation, characterization, and sorption properties for NiII of iron oxyhydroxide-montmorillonite Colloids and Surfaces A. Physicochemical and Engineering Aspects 168 133145 10.1016/S0927-7757(00)00448-9.CrossRefGoogle Scholar
Gregory, M.J. (1970) Evidence for a cyclic AA11 mechanism in the hydrolysis of benzilidene diacetates. Journal of Chemistry Society B, 12011207.CrossRefGoogle Scholar
Izumi, Y. Masih, D. Aika, K. and Seida, Y., (2005) Characterization of intercalated iron(III) nanoparticles and oxidative adsorption of arsenite on them monitored by X-ray absorption fine structure combined with fluorescence spectrometry Journal of Physical Chemistry B 109 32273232 10.1021/jp047571o.CrossRefGoogle ScholarPubMed
Jin, T.-S. Du, G.-Y. Zhang, Z.-H. and Li, T.-S., (1997) An efficient and convenient procedure for preparation of 1,1-diacetates from aldehydes catalyzed by expansive graphite Synthetic Communications 27 22612266 10.1080/00397919708003380.CrossRefGoogle Scholar
Jin, T.-S. Ma, Y.-R. Zhang, Z.-H. and Li, T.-S., (1997) An efficient and facile procedure for deprotection of 1,1-diacetates catalyzed by expansive graphite Synthetic Communications 27 33793383 10.1080/00397919708005638.CrossRefGoogle Scholar
Jin, T.-S. Ma, Y.-R. Zhang, Z.-H. and Li, T.-S., (1998) An efficient and facile procedure for deprotection of 1,1-diacetates using anhydrous ferrous sulfate Organic Preparations and Procedures International 30 463466 10.1080/00304949809355312.CrossRefGoogle Scholar
Joshi, M.V. Narasimhari, C.S. and Mukesh, O., (1993) Facile conversion of aldehydes to 1,1-diacetates catalyzed by H ZSM-5 and tungstosilicic acid Journal of Catalysis 141 308310 10.1006/jcat.1993.1138.CrossRefGoogle Scholar
Karimi, B. Seradj, H. and Ebrahimian, G.R., (2000) Mild and efficient conversion of aldehydes to 1,1-diacetates catalyzed with N-bromosuccinimide (NBS) Synlett 5 623624.Google Scholar
Klencsár, Z. (1998) ‘EXRAY’ peak searching computer program. Personal communication.Google Scholar
Klencsár, Z. Kuzmann, E. and Vértes, A., (1996) User-friendly software for Mössbauer spectrum analysis Journal of Radioanalytical and Nuclear Chemistry 210 105118 10.1007/BF02055410.CrossRefGoogle Scholar
Kochhar, K.S. Bal, B.S. Deshpande, R.P. Rajadhyaksha, S.N. and Pinnick, H.W., (1983) Conversion of aldehydes into geminal diacetates Journal of Organic Chemistry 48 17651767 10.1021/jo00158a036.CrossRefGoogle Scholar
Kong, Q. Hu, Y. Lu, H. Chen, Z. and Fan, W., (2005) Synthesis and properties of polystyrene/Fe-montmorillonite nanocomposites using synthetic Fe-montmorillonite by bulk polymerization Journal of Materials Science 40 45054509 10.1007/s10853-005-0855-9.CrossRefGoogle Scholar
Kozai, N. Adachi, Y. Kawamura, S. Inada, K. Kozaki, T. Sato, S. Ohashi, H. Ohnuki, T. and Banba, T., (2001) Characterization of Fe-montmorillonite: A simulant of buffer materials accommodating overpack corrosion product Journal of Nuclear Science and Technology 38 11411143 10.1080/18811248.2001.9715149.CrossRefGoogle Scholar
Klug, H.P. and Alexander, L.E., (1954) X-ray Diffraction Procedures. Wiley London, Paris New York 716 pp.Google Scholar
Kumar, P. Hegda, V.R. and Kumar, T.P., (1995) An efficient synthesis of diacetates from aldehydes using beta zeolite Tetrahedron Letters 36 601602 10.1016/0040-4039(94)02292-J.CrossRefGoogle Scholar
Kuzmann, E. Nagy, S. Vértes, A. Weiszburg, T. Garg, V.K., Vértes, A. Nagy, S. and Süvegh, K., (1998) Applications of Mössbauer spectroscopy in mineralogy and geology Nuclear Methods in Mineralogy and Geology New York Plenum 285376 10.1007/978-1-4615-5363-2_7.CrossRefGoogle Scholar
Li, T.-S. Zhang, Z.-H. and Gao, Y.-J., (1998) A rapid preparation of acylals of aldehydes catalysed by Fe3+-montmorillonite Synthetic Communications 28 4665–4571 10.1080/00397919808004531.CrossRefGoogle Scholar
Nagy, N.M. Jakab, M.A. Kónya, J. and Antus, S., (2002) Convenient preparation of 1,1-diacetates from aromatic aldehydes catalysed by zinc-montmorillonite Applied Clay Science 21 213216 10.1016/S0169-1317(02)00066-2.CrossRefGoogle Scholar
Oláh, G.A. and Mehrotra, A.K. (1983) Improved Nation-H catalyzed preparation of 1,1-diacetates from aldehydes. Synthesis, 962963.Google Scholar
Oliveira, L.C.A. Rios, RVRA Fabris, J.D. Sapag, K. Garg, V.K. and Lago, R.M., (2003) Clay-iron oxide magnetic composites for the adsorption of contaminants in water Applied Clay Science 22 169177 10.1016/S0169-1317(02)00156-4.CrossRefGoogle Scholar
Pálinkó, I. Lázár, K. Hannus, I. and Kiricsi, I., (1996) Step towards nanoscale Fe moieties: Intercalation of simple and Keggin-type iron-containing ions in between the layers of Na-montmorillonite Journal of Physics and Chemistry of Solids 57 10671072 10.1016/0022-3697(95)00397-5.CrossRefGoogle Scholar
Pereira, Carlos Gigante, Bárbara Marcelo-Curto, M. J. Carreyre, Helène Pérot, G.u.y. and Guisnet, Michel, (1995) Diacetates From Aldehydes in the Presence of Zeolites Synthesis 1995 09 10771078 10.1055/s-1995-4073.CrossRefGoogle Scholar
Pillai, U.R. and Sahle-Demessie, E., (2003) Oxidation of alcohols over Fe3+/montmorillonite-K10 using hydrogen peroxide Applied Catalysis A: General 245 103109 10.1016/S0926-860X(02)00617-8.CrossRefGoogle Scholar
Raju, S.V.N. (1996) Sulfated zirconia: an efficient catalyst for the synthesis of 1,1-diacetates from aldehydes and ketones. Journal of Chemical Research (Synopses), p. 68.Google Scholar
Scriabine, I. (1961) Nouveau procédé de préparation des aldéhydes dihirocinnamique. Bulletin Société Chimie de France, 11941198.Google Scholar
Shrigadi, N.B. Shinde, A.B. and Samant, S.D., (2003) Study of catalytic activity of free and K10-supported iron oxyhydroxides and oxides in the Friedel-Crafts benzylation reaction using benzyl chloride/alcohol to understand their role in the catalysis by the Fe-exchanged/impregnated K10 catalysts Applied Catalysis A: General 252 2325 10.1016/S0926-860X(03)00377-6.CrossRefGoogle Scholar
Stevens, J.G., (1958) Mössbauer Effect Reference and Data Index (MERDI) New York Interscience 2002.Google Scholar
Stevens, J.G. Pollak, H. Li, Z. Stevens, V.E. White, R.M. and Gibson, J.L., (1983) The Mössbauer Handbook of Minerals E North Carolina, USA Asheville.Google Scholar
Stucki, J.W. Lee, K. Zhang, L. and Larson, R.A., (2002) Effects of iron oxidation state on the surface and structural properties of smectites Pure and Applied Chemistry 74 21452158 10.1351/pac200274112145.CrossRefGoogle Scholar
Vlasova, M. Dominguez-Patiño, G. Kakazey, N. Dominguez-Patiño, M. Juarez-Romero, D. and Enríquez Méndez, Y., (2003) Structural-phase transformations in bentonite after acid treatment Science of Sintering 35 155166 10.2298/SOS0303155V.CrossRefGoogle Scholar
Zhang, Z.-H., Li, T.-S. and Fu, Ch.-G. (1997) An efficient and convenient procedure for preparation of 1,1-diacetates from aldehydes. Journal of Chemical Research (Synopses), 174175.CrossRefGoogle Scholar