Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-22T16:49:42.732Z Has data issue: false hasContentIssue false

Hydroxyl-Stretching Bands in Curve-Fitted Micro-Raman, Photoacoustic and Transmission Infrared Spectra of Dickite from St. Claire, Pennsylvania

Published online by Cambridge University Press:  28 February 2024

S. Shoval*
Affiliation:
Geology Group, Department of Natural Sciences, The Open University of Israel, 16 Klausner St., 61392 Tel Aviv, Israel
S. Yariv
Affiliation:
Department of Inorganic and Analytical Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
K. H. Michaelian
Affiliation:
Natural Resources Canada, CANMET Western Research Centre, Devon, Alberta, Canada T9G 1A8
M. Boudeulle
Affiliation:
LPCML, UMR 5620 CNRS, Claude Bernard University-Lyon 1, 43 Bd. 11 November 1918, 69622, Villeurbanne Cedex, France
G. Panczer
Affiliation:
LPCML, UMR 5620 CNRS, Claude Bernard University-Lyon 1, 43 Bd. 11 November 1918, 69622, Villeurbanne Cedex, France
*
E-mail of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The OH-stretching region in curve-fitted micro-Raman, photoacoustic and transmission IR spectra of St. Claire dickite was investigated. Polarized Raman spectra recorded from th. (001) an. (010) faces of the dickite crystal displayed six prominent OH bands. The relative intensities depend strongly on both the orientation of the crystallographic axes and the direction of the electric vector of the laser beam. Four out-of-plane vibrations, AA, Az, CA and Cz, at ~3710, 3706, 3654 and 3643 cm-1 respectively, predominate when the electric vector is perpendicular to the dickite plates. Two in-plane vibrations, Dz and DA at 3627 and 3623 cm-1, intensify when the electric vector is parallel to the plane. The relationship between band intensity and crystal orientation was interpreted in terms of longitudinal optic (LO) and transverse optic (TO) crystal vibration modes. These LO and TO crystal modes were also observed in curve-fitted photoacoustic and transmission IR spectra of coarse, non-oriented crystals of the dickite.

Type
Research Article
Copyright
Copyright © 2001, The Clay Minerals Society

References

Bish, D. L. and Johnston, C. T., 1993 Rietveld refinement and Fourier transform infrared spectroscopic study of the dick-ite structure at low temperature Clays and Clay Minerals 41 297304 10.1346/CCMN.1993.0410304.CrossRefGoogle Scholar
Brindley, G. W. Kao, C. Harrison, J. L. Lipsiscas, M. and Raythatha, R., 1986 Relation between the structural disorder and other characteristics of kaolinites and dickites Clays and Clay Minerals 34 233249 10.1346/CCMN.1986.0340303.CrossRefGoogle Scholar
Farmer, V. C. and Farmer, V. C., 1974 The layer silicates The Infrared Spectra of Minerals 331363 10.1180/mono-4.15.CrossRefGoogle Scholar
Farmer, V. C., 1998 Differing effects of particle size and shape in the infrared and Raman spectra of kaolinite Clay Minerals 33 601604 10.1180/claymin.1998.033.4.07.CrossRefGoogle Scholar
Farmer, V. C., 2000 Transverse and longitudinal crystal modes associated with OH stretching vibrations in single crystals of kaolinite and dickite Spectrochimica Acta Part A 56 927930 10.1016/S1386-1425(99)00182-1.CrossRefGoogle ScholarPubMed
Farmer, V. C. and Russell, J. D., 1964 The infrared spectra of layer silicates Spectrochimica Acta 20 11491173 10.1016/0371-1951(64)80165-X.CrossRefGoogle Scholar
van der Frost, R. L. and Gaast, S. J., 1997 Kaolinite hydrox-yls—a Raman microscopy study Clay Minerals 32 471484 10.1180/claymin.1997.032.3.09.CrossRefGoogle Scholar
Frost, R. L. Fredericks, P. M. and Shurvell, H. F., 1996 Raman microscopy of some kaolinite clay minerals Canadian Journal of Applied Spectroscopy 41 1014.Google Scholar
Frost, R. L. Tran, T. H. Rintopl, L. and Kristof, J., 1998 Raman microscopy of dickite, kaolinite and their intercalates Analyst 123 611616 10.1039/a707071c.CrossRefGoogle Scholar
Johansson, U. Frost, R. L. Forsling, W. and Kloprogge, J. T., 1998 Raman spectroscopy of the kaolinite hydroxyls at 77 K Applied Spectroscopy 52 12771282 10.1366/0003702981942780.CrossRefGoogle Scholar
Johnston, C. T. Sposito, G. and Birge, R. R., 1985 Raman spectroscopic study of kaolinite in aqueous suspension Clays and Clay Minerals 33 483489 10.1346/CCMN.1985.0330602.CrossRefGoogle Scholar
Johnston, C. T. Agnew, S. F. and Bish, D. L., 1990 Polarized single-crystal Fourier-transform infrared microscopy of Ouray dickite and Keokuk kaolinite Clays and Clay Minerals 38 573583 10.1346/CCMN.1990.0380602.CrossRefGoogle Scholar
Johnston, C. T. Helsen, J. Schoonheydt, R. A. Bish, D. L. and Agnew, S. F., 1998 Single-crystal Raman spectroscopic study of dickite American Mineralogist 83 7584 10.2138/am-1998-1-208.CrossRefGoogle Scholar
Michaelian, K. H., 1986 The Raman spectrum of kaolinite #9 at 21°C Canadian Journal of Chemistry 64 285289 10.1139/v86-048.CrossRefGoogle Scholar
Michaelian, K. H., 1990 Step-scan photoacoustic infrared spectra of kaolinite Infrared Physics 30 181186 10.1016/0020-0891(90)90029-U.CrossRefGoogle Scholar
Michaelian, K. H. Yariv, S. and Nasser, A., 1991 Study of the interactions between caesium bromide and kaolinite by photoacoustic and diffuse reflectance infrared spectroscopy Canadian Journal of Chemistry 69 749754 10.1139/v91-110.CrossRefGoogle Scholar
Miller, J. G. and Oulton, J. D., 1970 Protropy in kaolinite during percussive grinding Clays and Clay Minerals 18 313323 10.1346/CCMN.1970.0180603.CrossRefGoogle Scholar
Pajcini, V. and Dhamelincourt, P., 1994 Raman study of OH-stretching vibrations in kaolinite at low temperature Applied Spectroscopy 48 638641 10.1366/0003702944924844.CrossRefGoogle Scholar
Prost, R. Damene, A. S. Huard, E. Driard, J. and Leydecker, J. P., 1989 IR study of the structural OH in kaolinite, dickite and nacrite and poorly crystalline kaolinite at 5 to 600 K Clays and Clay Minerals 37 464468 10.1346/CCMN.1989.0370511.CrossRefGoogle Scholar
Shoval, S. Boudeulle, M. Panczer, G. Yariv, S., Baer, G. and Heimann, A., 1995 Raman micro-spectrometry and infrared spectroscopy study of the alteration products of trachyte sills and dykes in Makhtesh Ramon area, Israel Physics and Chemistry of Dykes 325337.Google Scholar
Shoval, S. Michaelian, K. H. Boudeulle, M. Panczer, G. and Yariv, S., 1997 OH stretching Raman active modes in dickite Program and Abstracts, Annual Meeting of the Geological Society of Israel 108.Google Scholar
Shoval, S. Yariv, S. Michaelian, K. H. Lapides, I. Boudeulle, M. and Panczer, G., 1999 A fifth OH-stretching band in IR spectra of kaolinites Journal of Colloid and Interface Science 212 523529 10.1006/jcis.1998.6055.CrossRefGoogle ScholarPubMed
Shoval, S. Yariv, S. Michaelian, K. H. Boudeulle, M. and Panczer, G., 1999 Hydroxyl-stretching bands ‘A’ and ‘Z’ in Raman and infrared spectra of kaolinites Clay Minerals 34 551563 10.1180/000985599546442.CrossRefGoogle Scholar
Shoval, S. Yariv, S. Michaelian, K. H. Boudeulle, M. and Panczer, G., 2001 LO and TO crystal modes of the hydroxyl stretching vibrations in micro-Raman and infrared spectra of nacrite Optical Materials 16 311318 10.1016/S0925-3467(00)00091-4.CrossRefGoogle Scholar
Swanson, B. I., 1973 General notation for polarized Raman scattering from gases, liquids, and single crystals Applied Spectroscopy 27 382385 10.1366/000370273774333245.CrossRefGoogle Scholar
Wiewiora, A. Wieckowski, T. and Sokolowska, A., 1979 The Raman spectra of kaolinite sub-group minerals and of pyrophyllite Archiwum Mineralogiczne 135 514.Google Scholar
Yariv, S., 1986 Interactions of minerals of the kaolin group with cesium chloride and deuteration of the complexes International Journal of Tropical Agriculture IV4 310322.Google Scholar