Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-22T23:45:07.323Z Has data issue: false hasContentIssue false

Hydrothermal synthesis of beidellites: Characterization and study of the cis- and trans-vacant character

Published online by Cambridge University Press:  01 January 2024

Sébastien Lantenois*
Affiliation:
Institut des Sciences de la Terre d’Orléans (ISTO), CNRS - Université d’Orléans, 1A rue de la Férollerie, 45071 Orléans Cedex 2, France Institut Charles Gerhardt, AIME (Agrégats, Interfaces et Matériaux pour l’Energie) CNRS - Université Montpellier 2, UMR 5253, CC 015, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
Fabrice Muller
Affiliation:
Institut des Sciences de la Terre d’Orléans (ISTO), CNRS - Université d’Orléans, 1A rue de la Férollerie, 45071 Orléans Cedex 2, France
Jean-Michel Bény
Affiliation:
Institut des Sciences de la Terre d’Orléans (ISTO), CNRS - Université d’Orléans, 1A rue de la Férollerie, 45071 Orléans Cedex 2, France
Jamel Mahiaoui
Affiliation:
Institut Charles Gerhardt, AIME (Agrégats, Interfaces et Matériaux pour l’Energie) CNRS - Université Montpellier 2, UMR 5253, CC 015, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
Rémi Champallier
Affiliation:
Institut des Sciences de la Terre d’Orléans (ISTO), CNRS - Université d’Orléans, 1A rue de la Férollerie, 45071 Orléans Cedex 2, France
*
* E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Low-charge beidellites were synthesized by a hydrothermal treatment applied to an amorphous gel phase in basic solution. The hydrothermal conditions for the syntheses were chosen from the stability field of beidellite previously investigated in the literature. The synthetic samples were characterized chemically and structurally using X-ray diffraction, infrared spectroscopy, cation exchange capacity measurement, and chemical and thermal analyses. We compared the synthetic sample with a natural beidellite sample (SbId) from Idaho, USA, looking at chemical composition and particle size. The main difference is the octahedral site occupancy (cis- or trans-vacant layer structure). The natural SbId sample has trans-vacant layers and the synthetic sample has a preferentially cis-vacant character. This character can be modulated, using specific synthesis conditions. The cis- or trans-vacant layer structure of various synthetic beidellites was investigated at low temperature (<350°C) and pressure (<25 MPa). Depending on the pressure and/or synthesis temperature, the proportion of cis-vacant layers ranges from 20 to 100% and increases with the layer-charge deficit.

Type
Research Article
Copyright
Copyright © 2008, The Clay Minerals Society

References

Besson, G., 1980 Structure des smectites dioctaédriques paramètres conditionnant les fautes d’empilement des feuillets France Thèse de l’Université d’Orléans, Orléans 153 pp.Google Scholar
Besson, G. and Drits, V.A., 1997 Refined relationships between chemical composition of dioctahedral fine-grained mica minerals and their infrared spectra within the OH stretching region. Part I: identification of the OH stretching bands Clays and Clay Minerals 45 158169 10.1346/CCMN.1997.0450204.CrossRefGoogle Scholar
Besson, G. and Drits, V.A., 1997 Refined relationships between chemical composition of dioctahedral fine-grained micaceous minerals and their infrared spectra within the OH stretching region. Part II: The main factors affecting OH vibrations and quantitative analysis Clays and Clay Minerals 45 170183 10.1346/CCMN.1997.0450205.CrossRefGoogle Scholar
Caillere, S. Henin, S. and Rautureau, M., 1982 Minéralogie des Argiles, 2. Classification et Nomenclature Paris Masson 182 pp.Google Scholar
Cases, J.M. Bérend, I. Besson, G. François, M. Uriot, J.P. Thomas, F. and Poirier, J.E., 1992 Mechanism of adsorption and desorption of water vapor by homoionic montmorillonite. 1. The sodium-exchanged form Langmuir 8 27302739 10.1021/la00047a025.CrossRefGoogle Scholar
De Kimpe, C.R., 1976 Formation of phyllosilicates and zeolites from pure silica-alumina gels Clays and Clay Minerals 24 200207 10.1346/CCMN.1976.0240408.CrossRefGoogle Scholar
Decarreau, A. Bonnin, D. Badaut-Trauth, D. Couty, R. and Kaiser, P., 1987 Synthesis and crystallogenesis of ferric smectite by evolution of Si-Fe coprecipitates in oxidizing conditions Clays and Clay Minerals 22 207223 10.1180/claymin.1987.022.2.09.CrossRefGoogle Scholar
Drits, V.A., 2003 Structural and chemical heterogeneity of layer silicates and clay minerals Clay Minerals 38 403432 10.1180/0009855033840106.CrossRefGoogle Scholar
Drits, V.A. and McCarty, D.K., 2007 The nature of structure-bonded H2O in illite and leucophyllite from dehydration and dehydroxylation experiments Clays and Clay Minerals 55 4558 10.1346/CCMN.2007.0550104.CrossRefGoogle Scholar
Drits, V.A. Besson, G. and Muller, F., 1995 An improved model for structural transformations of heat-treated aluminous dioctahedral 2:1 layer silicates Clays and Clay Minerals 43 718731 10.1346/CCMN.1995.0430608.CrossRefGoogle Scholar
Drits, V.A. Lindgreen, H. Salyn, A.L. Ylagan, R. and McCarty, D.K., 1998 Semiquantitative determination of trans-vacant and cis-vacant 2:1 layers in illites and illite-smectites by thermal analysis and X-ray diffraction American Mineralogist 83 11881198 10.2138/am-1998-11-1207.CrossRefGoogle Scholar
Eberl, D., 1978 Reaction series for dioctahedral smectites Clays and Clay Minerals 26 327340 10.1346/CCMN.1978.0260503.CrossRefGoogle Scholar
Gaboriau, H., 1991 Interstratifiés smectite-kaolinite de l’Eure France Université d’Orléans 274 pp.Google Scholar
Gates, W.P. and Kloprogge, T., 2004 Infrared spectroscopy and the chemistry of dioctahedral smectites The Application of Vibrational Spectroscopy to Clay Minerals and Layered Double Hydroxides Aurora, Colorado, USA The Clay Minerals Society 125168.Google Scholar
Granquist, W.T. and Pollack, S.S., 1967 Clay mineral synthesis II. A randomly interstratified aluminum montmorillonoid American Mineralogist 52 212226.Google Scholar
Granquist, W.T. Hoffman, G.W. and Boteler, R.C., 1972 Clay mineral synthesis III. Rapid hydrothermal crystallization of an aluminian smectite Clays and Clay Minerals 20 323329 10.1346/CCMN.1972.0200509.CrossRefGoogle Scholar
Grauby, O. Petit, S. Decarreau, A. and Baronnet, A., 1993 The beidellite-saponite series: an experimental approach European Journal of Mineralogy 5 623635 10.1127/ejm/5/4/0623.CrossRefGoogle Scholar
Greene-Kelly, R. and Mackenzie, R.C., 1957 The montmorillonite minerals (smectites) The Differential Thermal Investigation of Clays London Mineralogical Society 140.Google Scholar
Gregg, S.J. and Sing, K.S.W., 1982 Adsorption, Surface Area and Porosity London Academic Press 44 pp.Google Scholar
Hamilton, D.L. and Henderson, C.M.B., 1968 The preparation of silicate compositions by a gelling method Mineralogical Magazine 36 832838 10.1180/minmag.1968.036.282.11.CrossRefGoogle Scholar
Kloprogge, J.T., 2006 Spectroscopic studies of synthetic and natural beidellites: A review Applied Clay Science 31 165179 10.1016/j.clay.2005.10.003.CrossRefGoogle Scholar
Kloprogge, J.T. Jansen, J.B.H. and Geus, J.W., 1990 Characterization of synthetic Na-beidellite Clays and Clay Minerals 38 409414 10.1346/CCMN.1990.0380410.CrossRefGoogle Scholar
Kloprogge, J.T. van der Eerden, A.M.J. Jansen, J.B.H. Geus, J.W. and Schuiling, R.D., 1993 Synthesis and paragenesis of Na-beidellite as a function of temperature, water pressure and sodium activity Clays and Clay Minerals 41 423430 10.1346/CCMN.1993.0410403.CrossRefGoogle Scholar
Kloprogge, J.T. Komarneni, S. and Amonette, J.E., 1999 Synthesis of smectite clay minerals: a critical review Clays and Clay Minerals 47 529554 10.1346/CCMN.1999.0470501.CrossRefGoogle Scholar
Lantenois, S., 2003 Réactivité fer métal/smectites en milieu hydraté à 80°C Orléans, France Université d’Orléans 188 pp.Google Scholar
Lantenois, S., Champallier, R., Bény, J.-M., and Muller, F. (2007a) Hydrothermal synthesis and characterization of dioctahedral smectites: a montmorillonite series. Applied Clay Science (in press).CrossRefGoogle Scholar
Lantenois, S. Bény, J.-M. Muller, F. and Champallier, R., 2007 Integration of iron in natural and synthetic Al-pyrophyllites: an infrared spectroscopic study Clay Minerals 42 129143 10.1180/claymin.2007.042.1.09.CrossRefGoogle Scholar
MacEwan, D.M.C. and Brown, G., 1961 The X-ray Identification and Crystal Structures of Clay Minerals London Mineralogical Society 143 pp.Google Scholar
Mackenzie, R.C., 1970 Differential Thermal Analysis London Academic Press Vol. I.Google Scholar
Moore, D.M. and Reynolds, R.C., 1997 X-ray Diffraction and the Identification and Analysis of Clays Minerals Oxford and New York Oxford University Press 87.Google Scholar
Muller, F. Drits, V.A. Plançon, A. and Robert, J.-L., 2000 Structural transformation of 2:1 dioctahedral layer silicates during dehydroxylation-rehydroxylation reactions Clays and Clay Minerals 48 572585 10.1346/CCMN.2000.0480510.CrossRefGoogle Scholar
Muller, F. Pons, C.-H. and Papin, A., 2002 Study of dehydroxylated-rehydroxylated smectites by SAXS Journal de Physique IV 12 617.Google Scholar
Nakazawa, H. Yamada, H. Yoshioka, K. Adachi, M. and Fujita, T., 1991 Montmorillonite crystallization from glass Clay Science 8 5968.Google Scholar
Roux, J. and Volfinger, M., 1996 Mesures précises à l’aide d’un détecteur courbe Journal de Physique IV 127134.Google Scholar
Roy, R. and Sand, L.B., 1956 A note on some properties of synthetic montmorillonites American Mineralogist 40 147178.Google Scholar
Suquet, H. Iiyama, J.T. Kodama, H. and Pezerat, H., 1977 Synthesis and swelling properties of saponites with increasing layer charge Clays and Clay Minerals 25 231242 10.1346/CCMN.1977.0250310.CrossRefGoogle Scholar
Suquet, H. Prost, R. and Pezerat, H., 1982 Etude par spectroscopie infrarouge et diffraction X des interactions eau-cation-feuillet dans les phases à 14.6, 12.2 et 10.1 Å d’une saponite — Li de synthese Clay Minerals 17 231241 10.1180/claymin.1982.017.2.08.CrossRefGoogle Scholar
Torii, K., 1985 Synthesis of triocathedral smectites Journal of the Clay Science Society of Japan 25 7178.Google Scholar
Torii, K. and Iwasaki, T., 1986 Synthesis of new trioctahedral Mg-smectite Chemistry Letters 12 20212024 10.1246/cl.1986.2021 (Tokyo).CrossRefGoogle Scholar
Torii, K. and Iwasaki, T., 1987 Synthesis of hectorite Clay Science 7 116.Google Scholar
Torii, K. Asaka, M. and Hotta, M., 1983 Synthesis of silicates Japanese Patent 58/185 431.Google Scholar
Trauth, N. and Lucas, J., 1967 Apport des méthodes thermiques dans l’étude des minéraux argileux Bulletin du Groupe Français des Argiles XIX-2 1124 10.3406/argil.1967.1074.CrossRefGoogle Scholar
Tsipursky, S.I. and Drits, V.A., 1984 The distribution of octahedral cations in the 2:1 layers of dioctahedral smectites studied by oblique-texture electron diffraction Clay Minerals 19 177193 10.1180/claymin.1984.019.2.05.CrossRefGoogle Scholar
Tsipursky, S.I., Kameneva, M.Y., and Drits, V.A. (1985) Structural transformation of Fe3+-containing 2:1 dioctahedral phyllosilicates in the course of dehydration. Proceedings of the 5thConference of the European Clay Groups (Konta, J. editor). Prague, pp. 569577.Google Scholar
Weir, A.H. and Greene-Kelly, R., 1962 Beidellite American Mineralogist 47 137146.Google Scholar
Yamada, H. Nakazawa, H. Yoshioka, K. and Fujita, T., 1991 Smectites in the montmorillonite-beidellite series Clay Minerals 26 359369 10.1180/claymin.1991.026.3.05.CrossRefGoogle Scholar
Yamada, H. Nakazawa, H. Hashizume, H. Shimomura, S. and Watanabe, T., 1994 Hydration behaviour of Na-smectite crystals synthesized at high pressure and high temperature Clays and Clay Minerals 42 7780 10.1346/CCMN.1994.0420110.CrossRefGoogle Scholar
Zviagina, B.B. McCarty, D.K. Środoń, J. and Drits, V.A., 2004 Interpretation of infrared spectra of dioctahedral smectites in the region of OH-stretching vibrations Clays and Clay Minerals 52 399410 10.1346/CCMN.2004.0520401.CrossRefGoogle Scholar