Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-10T10:13:29.811Z Has data issue: false hasContentIssue false

Hydrothermal Synthesis and Characterization of Cobalt Clays

Published online by Cambridge University Press:  02 April 2024

Linda A. Bruce
Affiliation:
CSIRO, Division of Materials Science, Normamby Road, Clayton, Victoria 3168 Australia
John V. Sanders
Affiliation:
CSIRO, Division of Materials Science, Normamby Road, Clayton, Victoria 3168 Australia
Terence W. Turney
Affiliation:
CSIRO, Division of Materials Science, Normamby Road, Clayton, Victoria 3168 Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Reaction of mixtures of cobalt nitrate, colloidal silica, and a metal hydroxide (MOH) under hydrothermal conditions produced a range of cobalt hydroxysilicates, the components of which depended upon the identity of M, temperature, and reactant ratios. At 250°C, if M = Na, a smectite of composition Na0.06Co3.07Si3.95O10(OH)2 (I) was produced. If M = K, either a mica, KCo2.5Si4O10(OH)2 (II), intermediate between di- and trioctahedral, or a Si-deficient mica, KCo3Si3.75O10(OH)2 (III), was formed depending upon the reactant ratios. Similarly, if M = Cs, either a vermiculite or a 2:1 layer silicate intermediate between a mica and a brittle mica was produced. If M = Li, only the non-clay mineral Li2CoSiO4 was formed. Tetraalkylammonium hydroxides (NR4OH, R = methyl, ethyl, or propyl) yielded chrysotile. All phases were characterized by elemental analysis, transmission electron microscopy, and X-ray powder diffraction. Further characterization of smectite I was undertaken by diffuse reflectance, infrared, and X-ray photoelectron spectroscopy. The layer charge in these clays appears to stem from cation vacancies within an almost trioctahedral sheet and, possibly, within the tetrahedral sheets. Some of the cobalt present had tetrahedral coordination geometry, but its location was not determined.

Type
Research Article
Copyright
Copyright © 1986, The Clay Minerals Society

References

Anderson, R. B., 1984 The Fischer- Tropsch Synthesis 122129.Google Scholar
Brindley, G. W., Bish, D. L. and Wan, H. M., 1979 Compositions, structures and properties of nickel-containing minerals in the kerolite-pimelite series Amer. Mineral. 64 615625.Google Scholar
Brindley, G. W. and Brown, G., 1980 Crystal Structures of Clay Minerals and their X-ray Identification 169180.CrossRefGoogle Scholar
Brisk, M. A. and Baker, A. D., 1975 Shake-up satellites in X-ray photoelectron spectroscopy J. Electron. Spect. Rel. Phenom. 7 197213.CrossRefGoogle Scholar
Bruce, L. A., McArthur, H. and Turney, T. W., 1984 Characterisation and evaluation of Fischer-Tropsch catalysts prepared hydrothermally Proc. 12th Aust. Chem. Eng. Conf. 649654.Google Scholar
Calvet, R. and Prost, R., 1971 Cation migration into empty octahedral sites and surface properties of clays Clays & Clay Minerals 19 175186.CrossRefGoogle Scholar
Cotton, F. A., Goodgame, D. M. L. and Goodgame, M., 1961 The electronic structure of tetrahedral cobalt(II) complexes J. Amer. Chem. Soc. 83 46904699.CrossRefGoogle Scholar
Dalmon, J.-A. and Martin, G.-A., 1968 Sur la préparation et la structure de silicates basiques de cobalt et de magnésium du type talc et antigorite C.R. Acad. Sci. Paris Série D 267 610613.Google Scholar
Dalmon, J.-A., Martin, G.-A. and Imelik, B., 1973 Silicates basiques de cobalt: talc et antigorite J. Chim. Phys. 70 214224.CrossRefGoogle Scholar
Decarreau, A., 1981 Cristallogenèse à basse température de smectites trioctahédriques par vieillissement de copré-cipites silicometalliques de formule (Si4-xAlx)M3O11.nH2O C.R. Acad. Sci. Paris Série II 292 6164.Google Scholar
De Vynck, I., 1980 Synthèse de phyllosilicates de cobalt, de nickel, de cuivre et de zinc Silic. Industr. 5166.Google Scholar
Dillard, J. G., Schenk, C. V. and Koppelman, M. H., 1983 ‘Surface chemistry of cobalt in calcined cobalt-kaolinite materials’ Clays & Clay Minerals 31 6972.CrossRefGoogle Scholar
Farmer, V. C., 1974 Infra-red Spectra of Minerals 331364.CrossRefGoogle Scholar
Farmer, V. C. (1979) Data Handbook for Clay Minerals and other Non-Metallic Minerals: Olphen, H. van and Fripiat, J. J., eds., Pergamon Press, Oxford, 285338.Google Scholar
Feitnecht, W. and Berger, A., 1942 Über die Bildung eines Nickel- und Kobaltsilicates mit Schichtergitter Helv. Chim. Acta 25 15431547.CrossRefGoogle Scholar
Fergusson, J., 1970 Spectroscopy of 3d complexes Prog. Inorg. Chem. 12 159293.CrossRefGoogle Scholar
Gier, T. E., Cox, N. L. and Young, M. S., 1964 The hydrothermal synthesis of sodium amphiboles Inorg. Chem. 3 10011004.CrossRefGoogle Scholar
Hazen, R. M. and Wones, D. R., 1972 Effect of cation substitutions on the physical properties of trioctahedral micas Amer. Mineral. 57 103129.Google Scholar
Hewitt, D. A. and Wones, D. R., 1975 Physical properties of some synthetic Fe-Mg-Al trioctahedral biotites Amer. Mineral. 60 854862.Google Scholar
Koppelman, M. H., Dillard, J. G., Mortland, M. M. and Farmer, V. C., 1979 The application of XPS to the study of mineral surface chemistry Proc. Int. Clay Conf, Oxford, 1978 153166.CrossRefGoogle Scholar
Kwak, T. A. P., 1971 An experimental study on Fe-Mg micas transitional between dioctahedral and trioctahedral compositions Neues Jahrb. Miner. Monatsh. 326335.Google Scholar
Lok, B. M., Cannan, T. R. and Messina, C. A., 1983 The role of organic molecules in molecular sieve synthesis Zeolites 282291.CrossRefGoogle Scholar
Longuet, J., 1947 Synthèse de silicates de nickel, magnésium et cobalt, présentant des structures du type kaolinite-antigorite C.R. Acad. Paris Série D 225 869872.Google Scholar
Nesterchuk, N. I., Makarova, T. A. and Fedoseev, A. D., 1968 Hydrothermal synthesis of a fibrous Na-Co amphibole Dokl. Akad. Nauk S.S.S.R. (English Transl.) 179 201202.Google Scholar
Noll, W., Kircher, H. and Sybertz, W., 1960 Über synthetischen Kobaltchrysotil und seine Beziehungen zu anderen Solenosilikaten Beitr. Mineral. Petr. 7 232241.CrossRefGoogle Scholar
Pistorius, C. W. F. T., 1963 Some phase relations in the systems CoO-SiO2-H2O, NiO-SiO2-H2O and ZnO-SiO2-H2O to high pressures and temperatures Neues Jahrb. Mineral. Monatsh. 3057.Google Scholar
Russell, J. D. and Farmer, V. C., 1964 Infrared spectroscopic study of the dehyration of montmorillonite and sa-ponite Clay Min. Bull. 5 443464.CrossRefGoogle Scholar
Russell, J. D., Farmer, V. C. and Velde, B., 1970 Replacement of OH by OD in layer silicates, and identification of the vibrations of those groups in infra-red spectra Mineral-Mag. 37 869879.CrossRefGoogle Scholar
Seifert, F. and Schreyer, W., 1965 Synthesis of a new mica, KMg2.5[Si4O10](OH)2 Amer. Mineral. 50 11141118.Google Scholar
Seifert, F. and Schreyer, W., 1971 Synthesis and stability of micas in the system K2O-MgO-SiO2-H2O and their relations to phlogopite Contr. Mineral. Petrol. 30 196215.CrossRefGoogle Scholar
Sexton, B. A., Hughes, A. E. and Turney, T. W., 1985 An XPS and TPR study of the reduction of promoted cobalt-kieselguhr Fischer-Tropsch catalysts J. Catalysis .CrossRefGoogle Scholar
Shannon, R. D., 1976 Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides Acta Crystallogr. 32A 751767.CrossRefGoogle Scholar
Slade, P. G., Stone, P. A. and Radoslovich, E. W., 1985 Interlayer structures of the two-layer hydrates of Na- and Ca-vermiculites Clays & Clay Minerals 33 5161.CrossRefGoogle Scholar
Tateyama, H., Shimoda, S. and Sudo, T., 1974 The crystal structure of synthetic Mgiv mica Z. Krystallogr. 139 196206.CrossRefGoogle Scholar
Tateyama, H., Shimoda, S. and Sudo, T., 1976 Infrared absorption spectra of synthetic Al-free magnesium micas Neues Jahrb. Mineral. Monatsh. 128140.Google Scholar
Walker, G. F. and Brown, G., 1961 Vermiculite minerals The X-ray Identification and Crystal Structures of Clay Minerals 297324.Google Scholar
West, A. R. and Glasser, F. P., 1972 Preparation and crystal chemistry of some tetrahedral Li3PO4-type compounds J. Solid State Chem. 4 2028.CrossRefGoogle Scholar