Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T13:17:58.896Z Has data issue: false hasContentIssue false

Hydrothermal Reactivity of Mixed-Layer Kaolinite/Smectite: Experimental Transformation of High-Charge to Low-Charge Smectite

Published online by Cambridge University Press:  02 April 2024

D. Proust
Affiliation:
Laboratoire de Pétrologie des Alterérations Hydrothermales, Université de Poitiers, 86022 Poitiers Cedex, France
J. Lechelle
Affiliation:
Commissariat à l'Energie Atomique, DRDD/SESD, 92260 Fontenay-aux-Roses, France
A. Lajudie
Affiliation:
Commissariat à l'Energie Atomique, DRDD/SESD, 92260 Fontenay-aux-Roses, France
A. Meunier
Affiliation:
Laboratoire de Pétrologie des Alterérations Hydrothermales, Université de Poitiers, 86022 Poitiers Cedex, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A mixed-layer kaolinite/smectite (K/S) containing trace amounts of quartz, discrete kaolinite, goethite-hematite, and calcite was hydrothermally reacted with deionized water at 150°, 200°, and 250°C for 1 to 12 months. The starting K/S contained 50% smectite consisting of 15% low-charge and 35% high-charge layers. The X-ray powder diffraction and chemical analyses of the reacted products indicated a progressive reaction from high-charge to low-charge smectite as a function of time and temperature. The reaction reached completion after 4 months at 250°C, at which point high-charge smectite layers entirely reacted to low-charge smectite layers, the latter maintaining a constant proportion of about 90% for longer run durations. For long reaction times, discrete kaolinite totally reacted, whereas quartz showed only partial dissolution and iron oxides remained stable. Thus, the reaction of high-charge to low-charge smectite layers may be expressed as: high-charge smectite + kaolinite (both interstratified and discrete component) + quartz → low-charge smectite.

Type
Research Article
Copyright
Copyright © 1990, The Clay Minerals Society

References

Boles, J. R. and Franks, S. G., 1979 Clay diagenesis in Wilcox sand-stones of southwest Texas: Implication of smectite diagenesis on sandstone cementation J. Sed. Petr. 49 5570.Google Scholar
Bouchet, A., Proust, D., Meunier, A. and Beaufort, D., 1988 High-charge to low-charge smectite reaction in hydrothermal alteration processes Clay Miner. 23 133146.CrossRefGoogle Scholar
Brindley, G. W., Suzuki, T. and Thiry, M., 1983 Inter-stratified kaolinite/smectites from the Paris Basin: Correlations of layers proportions, chemical compositions and other data Bull. Mineral. 106 403410.Google Scholar
Brown, G., Brindley, G. W., Brindley, G. W. and Brown, G., 1980 X-ray diffraction procedures for clay mineral identification Crystal Structures of Clay Minerals and their X-ray Identification London Mineralogical Society 339346.Google Scholar
Čičel, B. and Machajdik, D., 1981 Potassium- and ammonium-treated montmorillonites. I. Interstratified structures with ethylene glycol and water Clays & Clay Minerals 29 4046.CrossRefGoogle Scholar
Coulon, H., 1987 Propriétés physicochimiques de sédiments argileux français: Applications au stockage de déchets radioactifs Lille, France University of Lille.Google Scholar
Eberl, D., 1978 The reaction of montmorillonite to mixed-layer clay: The effect of interlayer alkali and alkaline-earth cations Geochim. Cosmochim. Acta 42 17.CrossRefGoogle Scholar
Eberl, D. and Hower, J., 1976 Kinetics of illite formation Geol. Soc. Amer. Bull. 87 13261330.2.0.CO;2>CrossRefGoogle Scholar
Howard, J. J., 1981 Lithium and potassium saturation of illite/smectite clays from interlaminated shales and sandstones Clays & Clay Minerals 29 136142.CrossRefGoogle Scholar
Howard, J. J. and Roy, D. M., 1985 Development of layer charge and kinetics of experimental smectite alteration Clays & Clay Minerals 33 8188.CrossRefGoogle Scholar
Hower, J. and Mowatt, T. C., 1966 The mineralogy of illites and mixed-layer illite-montmorillonite Amer. Mineral. 51 825854.Google Scholar
Hower, J., Eslinger, E. V., Hower, M. E. and Perry, E. A., 1976 Mechanism of burial metamorphism of argillaceous sediments: I. Mineralogical and chemical evidence Geol. Soc. Amer. Bull. 87 725737.2.0.CO;2>CrossRefGoogle Scholar
Inoue, A., Minato, H. and Utada, M., 1978 Mineralogical properties and occurrence of illite/montmorillonite mixed-layer minerals formed from Miocene volcanic glass in Waga-Omono district Clay Sci. 5 123136.Google Scholar
Inoue, A. and Utada, M., 1983 Further investigations of a conversion series of dioctahedral mica/smectite in the Shin-zan hydrothermal alteration area, northeast Japan Clays & Clay Minerals 31 401412.CrossRefGoogle Scholar
Jackson, M. L., 1958 Soil Chemical Analysis 3rd ed. New Jersey Prentice Hall, Englewood Cliffs.Google Scholar
Lucas, J., Trauth, N. and Thiry, M., 1974 Les minéraux argileux des sédiments paléogènes du bassin de Paris. Evolution des smectites et des interstratifiés (7–14) Bull. Gr. Franç. Argiles 26 245262.CrossRefGoogle Scholar
Meunier, A. and Velde, B., 1989 Solid solutions in I/S mixed-layer minerals and illite Amer. Mineral. 74 11061112.Google Scholar
Nadeau, P. H. and Bain, D. C., 1986 Composition of some smectites and diagenetic illitic clays and implications for their origin Clays & Clay Minerals 34 455464.CrossRefGoogle Scholar
Ramseyer, K. and Boles, J. R., 1986 Mixed-layer illite/smectite in tertiary sandstones and shales, San Joaquin Basin, California Clays & Clay Minerals 34 115124.CrossRefGoogle Scholar
Rassineux, F., Beaufort, D., Bouchet, A., Merceron, T. and Meunier, A., 1988 Use of a linear localization detector for X-ray diffraction of very small quantities of clay minerals Clays & Clay Minerals 36 187189.CrossRefGoogle Scholar
Reynolds, R. C., Brindley, G. W. and Brown, G., 1980 Interstratified clay minerals Crystal Structures of Clay Minerals and their X-ray Identification London Mineralogical Society 249303.CrossRefGoogle Scholar
Reynolds, R. C. and Hower, J., 1970 The nature of inter-layering in mixed-layer illite-montmorillonite Clays & Clay Minerals 18 2536.CrossRefGoogle Scholar
Roberson, H. E. and Lahann, R. W., 1981 Smectite to illite conversion rates: Effects of solution chemistry Clays & Clay Minerals 29 129135.CrossRefGoogle Scholar
Srodon, J., 1980 Precise identification of illite/smectite interstratifications by X-ray powder diffraction Clays & Clay Minerals 28 401411.CrossRefGoogle Scholar
Środoń, J., Morgan, D. J., Eslinger, E. V., Eberl, D. and Karlinger, M. R., 1986 Chemistry of illite/smectite and end-member illite Clays & Clay Minerals 34 368378.CrossRefGoogle Scholar
Thiry, M. (1981) Sédimentation continentale et altération associées: Calcitisations, ferruginisations et silicifications. Les argiles plastiques du Sparnacien du bassin de Paris: Sci. Géol. Mém. 64, 173 pp.Google Scholar
Thiry, M., Cavelier, C. and Trauth, N., 1977 Lessédiments de l’Eocène inférieur du bassin de Paris et leurs relations avec la paléoaltération de la craie Sci. Géol. Bull. 30 113128.Google Scholar
Velde, B., 1984 Electron microprobe analysis of clay minerals Clay Miner. 19 243247.CrossRefGoogle Scholar
Velde, B. and Brusewitz, A. M., 1982 Metasomatic and non metasomatic low-grade metamorphism of Ordovician metabentonites in Sweden Geochim. Cosmochim. Acta 46 447452.CrossRefGoogle Scholar
Voinovitch, I. A., Debras-Guédon, J. and Louvrier, J. (1962) L’Analyse des Silicates: I. A. Voinovitch, ed., Hermann, Paris, 510 pp.Google Scholar