Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-27T07:44:59.558Z Has data issue: false hasContentIssue false

A Hydromuscovite from the Shakanai Mine, Akita Prefecture, Japan

Published online by Cambridge University Press:  01 July 2024

Susumu Shimoda*
Affiliation:
Geological and Mineralogical Institute, Faculty of Science, Tokyo University of Education, Tokyo, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A hydromuscovite in association with gypsum and anhydrite was collected from the Shakanai mine, Akita Prefecture, Japan. Chemical composition: SiO2 47·14%; TiO2 0·34%; A12O3 37·09%; Fe2O3 0·49%; MgO 0·83%; CaO 0·57%; Na2O 0·35%; K2O 7·10%; H2O+ 5.18%; H20–0·99%; P2O5 0·01%; total 100·09%. Differential thermal and i.r. absorption analyses were similar to those of hydromuscovite. The X-ray diffraction pattern differed clearly from those of the 1M and/or 2M1 polymorphs and it was similar to that of the 2M2 polymorph, which is known to occur in lepido-lites.

Résumé

Résumé

Une hydromuscovite en association avec du gypse et de l’anhydrite a été recueillie de la mine de Shakanai, Préfecture d’Akita, Japon. Composition chimique: SiO2 47,14%; TiO2 0,34%; A12O3 37,09%; Fe2O3 0,49%; MgO 0,83%; CaO 0,57%; Na2O 0,35%; K2O 7,10%; H2O 5,18%; H2O− 0,99%; P2O5 0,01%; total 100,09%. Les analyses différentielles thermiques et d’absorption d’infra-rouge étaient similaires à celles de l’hydromuscovite. Un modèle de diffraction des rayons X différait nettement de ceux des polymorphes 1M et/ou 2M1 et était identique à celui du polymorphe 2M2 qui est connu pour se produire dans les lépidolites.

Kurzreferat

Kurzreferat

Ein Hydromuskowit begleitet von Gips und Anhydrit wurde aus den Shakanai Minen, Akita Prefektur, Japan bezogen. Die chemische Zusammensetzung war wie folgt: SiO2 47,14%; TiO, 0,34%; A12O3 37,09%; Fe2O3 0,49%; MgO 0,83%; CaO 0,57%; Na2O 0,35%; K2O 7,10%; H2d 5,18%; H20− 0,99%; P2O5 0,01%; insgesamt 100,09%. Die differentiellen Wärme- und Infrarotabsorptionsanalysen waren ähnlich denen des Hydromuskowits. Das Röntgenbeugungsbild unterschied sich deutlich von jenen des IM und/oder 2M1 Polymorphs und war ähnlich dem des 2M2 Polymorphs, das bekanntlich in Lepidoliten vorkommt.

Резюме

Резюме

Гидромусковит в ассоциации с гипсом и ангидритом обнаружен в месторождении Шаканай, префектура Акита, Япония. Химический состав минерала: Si02-47, 14%; Ti02-0,34%; А12О3-37,09%; Ре2О3-0, 49%; МgО-0.83%; СаО-0, 57%; Na2O-0, 35%; K2O-7, 10%; Н2O+-5, 18%; Н2О—0, 99%; Р2О5-0,01%; сумма 100, 09%.

Данные дифференциально-термического анализа и инфракрасной спектроскопии сходны с результатами, полученными ранее для других гидромусковитов. Порошкограммы обнаруживают явное отличие от таковой полиморфных модификаций 1М и/или 2М1 и сходны с порошкограммами порошка полиморфной модификации 2М2, которая характерна для некоторых лепидолитов.

Type
Research Article
Copyright
Copyright © 1970 The Clay Minerals Society

References

Heinrich, E. W., Levinson, A. A., Levandowski, D. W. and Hewitt, C. E. (1953) Studies in the natural history of micas: University of Michigan Engineering Res. Inst, project M. 978.Google Scholar
Hendricks, S. B. and Jefferson, M. (1939) Polymorphism of the micas, with optical measurments: Am. Mineralogist 24, 729771.Google Scholar
Levinson, A. A. (1953) Studies in the mica group; Relationship between polymorphism and composition in the muscovite-lepidolite series: Am. Mineralogist 38, 88107.Google Scholar
Oinuma, K. and Hayashi, H. (1968) Infrared spectra of clay minerals: J. Toyo Univ. General Education (Nat. Sci.) 9, 5798.Google Scholar
Radoslovich, E. W. (1960) Hydromuscovite with the 2M2 structure —A criticism: Am. Mineralogist 45, 894898.Google Scholar
Shimoda, S., Sudo, T. and Oinuma, K. (1969) Differential thermal analysis curves of mica clay minerals: Proc. Intern Clay Conf., Tokyo, Vol. 1, 197206.Google Scholar
Smith, J. V. and Yoder, H. S. (1956) Experimental and theoretical studies of the mica polymorphs: Mineral. Mag. 31, 209235.Google Scholar
Threadgold, I. M. (1959) A hydromuscovite with the 2M2 structure, from Mount Lyell, Tasmania: Am. Mineralogist 44, 488494.Google Scholar
Tornita, K. and Sudo, T. (1968) Interstratified structure formed from a pre-heated mica by acid treatments: Nature 217, 10431044.Google Scholar
Yoder, H. S. and Eugster, H. P. (1955) Synthetic and natural muscovite: Geochim. et Cosmochim. Acta 8, 225280.10.1016/0016-7037(55)90001-6CrossRefGoogle Scholar