Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T19:36:03.089Z Has data issue: false hasContentIssue false

Hydrogen bonding and polywater in clay-water systems

Published online by Cambridge University Press:  01 July 2024

Philip F. Low
Affiliation:
Department of Agronomy, Life Science Building, Purdue University, Lafayette, Indiana 47907
Joe L. White
Affiliation:
Department of Agronomy, Life Science Building, Purdue University, Lafayette, Indiana 47907
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Notes
Copyright
Copyright © 1970 The Clay Minerals Society

Footnotes

*

Journal paper 3798. Purdue University Agricultural Experiment Station, Lafayette, Indiana 47907.

References

Anderson, D. M. (1968) Undercooling, freezing point depression, and ice nucleation of soil water. Israel J. Chem. 6.349-355.Google Scholar
Anderson, D. M. and Hoekstn·, P. (1965) Crystallization of clay-adsorbed water. Science 149, 318319.CrossRefGoogle ScholarPubMed
Anderson, D. M. and Low, P. F. (1958) The density of water adsorbed by lithium-, sodium-, and potassium-bentonite. Soil Sci. Soc. Am. Proc. 22, 99103.CrossRefGoogle Scholar
Anisimova, V. I., Deryagin, B. V., Ershova, J. G., Lychnikov, D. S. and Rabinovich, Ya. I. (1967) Preparation of structurally modified water in quartz capillaries. Russ. J. Phys. Chem. (English translation) 41, 12821284.Google Scholar
Bazaron, U. V., Deryagin, V. V. and Bulgadaev, A. V. (1966) Investigations of the shearing elasticity of liquids and their boundary layers by a dynamic method. Proc. Acad. Sci. U.S.S.R. 166. 3033.Google Scholar
Bellamy, L. J., Osborn, A. R., Lippincott, E. R. and Bandy, A. R. (1969) Studies of the molecular structure and spectra of anomalous water. Chem. Ind. (London), pp. 686688 (May 1969).Google Scholar
Bellamy, L. J. and Pace, R. J. (1969) The significance of i.r. frequency shifts in relation to hydrogen bond strengths. Spectrochim. Acta 25A, 319328.Google Scholar
Bradley, W. F. (1959) Density of water sorbed on montmorillonite. Nature 183, 16141615.CrossRefGoogle Scholar
Bronson, R. D., Spain, J. M. and White, J. L. (1960) Potassium-depleted muscovite. Part 1. Preparation using filtration process for treatment with molten lithium nitrate. Proc. 8th Natl. Conf. Clays and Clay Minerals, pp. 3943.Google Scholar
Buehrer, T. F. and Rose, M. S. (1943) Studies in soil structure. V. Bound water in normal and puddled soils. Arizona Agrie. Exp. Sta. Tech. Bull. 100.Google Scholar
Clementz, D. (1969) Thermal expansion of water in Nabentonite systems. M.S. Thesis, Purdue University, Lafayette, Indiana.Google Scholar
Davey, B. G. and Low, P. F. (1968) Clay-water interaction as affected by hydrous aluminum oxide films. Trans. 9th Intern. Congr. Soil Sci. 1, 607616.Google Scholar
Derjaguin, V., Fedjakin, N. N. and Talayev, M. V. (1967) Concerning the modified state and structural polymorphism of liquids condensed from their under- saturated vapors in quartz capillaries. J. Colloid Interface Sci. 24. 132133.CrossRefGoogle Scholar
Derjaguin, V. V. and Greene-Kelly, R. (1964) Birefringence of thin liquid films. Trans. Faraday Soc. 60. 449455.CrossRefGoogle Scholar
Deryagin, V. V., Churaev, N. V., Fedyakin, N. N., Talaev, M. V. and Ershova, I. G. (1967) The modified state of water and other liquids. Bull. Acad. Sci. U.S.S.R. (English Transl.) No. 10, pp. 20952102.Google Scholar
Deryagin, V. V., Ershova, I. G., Zheleznyi, V. V. and Churaev, N. V. (1966) Thermal expansion of a structural modification of water in quartz capillaries. Dokl. Phys. Chem., Proc. Acad. Sci. U.S.S.R. (English Transi.) 170, 635637.Google Scholar
Deryagin, V. V. and Fedyakin, N. N. (1962) Special properties and viscosity of liquids condensed in capillaries. Dokl. Phys. Chem., Proc. Acad. Sci. U.S.S.R. (English transi.) 147, 808811.Google Scholar
Deryagin, V. V., Talaev, M. V. and Fedyakin, N. N. (1965) Allotropy of liquids in the condensation of their vapors in quartz capillaries. Dokl. Phys. Chem., Proc. Acad. Sci. U.S.S.R. (English Transi.) 165, 807809.Google Scholar
Deryaguin, V. V. (1966a) Effect of surface forces on the properties of boundary and thin layers of liquids and disperse systems. Bull. Int. Union Pure Appi Chem. No. 15 15. pp. 375384.CrossRefGoogle Scholar
Deryaguin, V. V. (1966b) Effect of lyophile surfaces on the properties of boundary liquid films. Discussions Faraday Soc.42. 109119.CrossRefGoogle Scholar
Deryaguin, V. V. and Churayev, N. V. (1968) Do we know water? Priroda (Nature) No. 4, 16-22; translation in Joint Publications Research Service No. 45989. p. 989.Google Scholar
Ducros, P. and Dupont, M. (1962) Etude par résonance magnétique nucléaire des protons dans les argiles. Bull. Groupe Franc. Argiles. Tome XIII, Série 8, pp. 5963.CrossRefGoogle Scholar
Emerson, W. W. (1962) The swelling of Ca-montmorillonite due to water absorption. 1. Water uptake in the vapour phase. J. Soil Sci. 13. 3139.CrossRefGoogle Scholar
Falk, M. and Ford, T. A. (1966) I.R. spectrum and structure of liquid water. Can. J. Chem. 44. 16991707.Google Scholar
Fedyakin, N. N. (1962) Change in the structure of water during condensation in capillaries. Colloid J. (English transi.) 24, 425428.Google Scholar
Fedyakin, N. N., Deryagin, B. V., Novikova, A. V. and Talaev, M. V. (1965) The mechanism of the formation of water columns with special properties by the condensation of water vapors in freshly drawn glass capillaries. Dokl. Phys. Chem. Proc. Acad. Sci. U.S.S.R. (English Transl.) 165, 862865.Google Scholar
Foster, W. R., Savins, J. G. and Waite, J. M. (1955) Lattice expansion and rheological behavior relationships in water-montmorillonite systems. Proc. 3rd Natl. Conf. Clays and Clay Minerals, pp. 296316.Google Scholar
Fripiat, J. J., Chaussidon, J. and Touillaux, R. (1960) Study of dehydration of montmorillonite and vermiculite by i.r. spectroscopy. J. Phys. Chem. 64, 12341241.CrossRefGoogle Scholar
Jorgenson, P. (1968) I.R. study of water adsorbed on Wyoming bentonite. Geologiska Føren. Stockholm Førh. 90, 213220 (In English).CrossRefGoogle Scholar
Kamb, B. (1968) Ice polymorphism and the structure of water. In Structural Chemistry and Molecular Biology, (Edited by Rich, A. and Davidson, N.), pp. 507542. Freeman, San Francisco.Google Scholar
Kemper, W. D., Maasland, D. E. L. and Porter, L. K. (1964) Mobility of water adjacent to mineral surfaces. Soil Sci. Soc. Am. Proc. 28. 164167.Google Scholar
Kolaian, J. H. and Low, P. F. (1963) Calorimetric determination of unfrozen water in montmorillonite pastes. Soil Sci. 95, 376384.CrossRefGoogle Scholar
Li, S. P. (1963) Measuring extremely low flow velocity of water in clays. Soil Sci. 95, 410413.Google Scholar
Lippincott, E. R., Stromberg, R. R., Grant, W. H. and Cessac, G. L. (1969) Polywater. Science 164, 14821487.CrossRefGoogle ScholarPubMed
Low, P. F. (1960) Viscosity of water in clay systems. Proc. 8th Natl. Conf. Clays and Clay Minerals, pp. 170182.CrossRefGoogle Scholar
Low, P. F. (1961) Physical chemistry of clay-water interaction. Advan. Agron. 13, 269327.CrossRefGoogle Scholar
Low, P. F. (1968) Observations on activity and diffusion coefficients in Na-montmorillonite. Israel J. Chem. 6, 325336.CrossRefGoogle Scholar
Low, P. F., Anderson, D. M. and Hoekstra, P. (1968) Some thermodynamic relationships for soils at or below the freezing point. I. Freezing point depression and heat capacity. Water Resources Research 4, 379394.CrossRefGoogle Scholar
Marchi, R. P. and Eyring, H. (1964) Application of significant structure theory to water. J. Phys. Chem. 68, 221228.CrossRefGoogle Scholar
Miller, R.J. and Low, P. F. (1963) Threshold gradient for water flow in clay systems. Soil Sci. Soc. Am. Proc. 27, 605609.CrossRefGoogle Scholar
Mortland, M. M., Fripiat, J. J., Chaussidon, J. and Uytterhoeven, J. (1963) Interaction between ammonia and the expanding lattices of montmorillonite and vermiculite. J. Phys. Chem. 67, 248257.CrossRefGoogle Scholar
Nakamoto, K., Margoshes, M. and Rundle, R. E. (1955) Stretching frequencies as a function of distances in hydrogen bonds. J. Am. Chem. Soc. 77, 64806486.CrossRefGoogle Scholar
Oakes, D. J. (1960) Solids concentration effects in bentonite drilling fluids. Clays and Clay Minerals 8, 252273.CrossRefGoogle Scholar
Pimentel, G. C. and McClellan, A. L. (1960) The Hydrogen Bond. Freeman, San Francisco.Google Scholar
Rosenqvist, I. Th.. (1955) Investigations in the clay-electrolyte-water system. Norwegian Geotechnical Institute Publication No. 9.Google Scholar
Russell, J. D. and Farmer, V. C. (1964). I.R. spectroscopic study of the dehydration of montmorillonite and saponite. Clay Minerals Bull. 5, 443464.CrossRefGoogle Scholar
Schufle, J. A. and Venugopalan, M. (1967) Specific volume of liquid water to — 40°C. J. Geophys. Res. 72, 32713275.CrossRefGoogle Scholar
Serratosa, J. M. (1960) Dehydration studies by i.r. spectroscopy. Am. Mineralogist 45, 11011104.Google Scholar
Touillaux, R., Salvadore, P., Vandermeersche, C. and Fripiat, J. J. (1968) Study of water layers adsorbed on Na- and Ca-montmorillonite by the pulsed nuclear magnetic resonance technique. Israel J. Chem. 6. 337348.Google Scholar
Willis, E., Rennie, G. K., Smart, C. and Pethica, B. A. (1969) “Anomalous” Water. Nature 222, 159161.CrossRefGoogle Scholar
Woessner, D. E. and Snowden, B. S. (1969a) NMR doublet splitting in aqueous montmorillonite gels. J. Chem. Phys. 50. 15161523.CrossRefGoogle Scholar
Woessner, D. E. and Snowden, B. S. (1969b) A study of the orientation of adsorbed water molecules on montmorillonite clays by pulsed NMR. J. Colloid Interface Sci. 30, 5468.CrossRefGoogle Scholar