Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-22T08:55:23.110Z Has data issue: false hasContentIssue false

Hydrogen Atom Positions in Kaolinite by Neutron Profile Refinement

Published online by Cambridge University Press:  02 April 2024

J. M. Adams*
Affiliation:
Edward Davies Chemical Laboratories, University College of Wales, Aberystwyth, Dyfed, SY23 1NE, United Kingdom
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A structure refinement of kaolinite made using the Rietveld neutron profile refinement technique has given non-hydrogen atom positions which were not significantly different from those given by B. B. Zvyagin in 1960. All of the hydrogen atoms have been located; the three inner-surface hydrogen atoms are involved in interlayer hydrogen bonds with lengths of 2.95(4), 2.95(4), and 3.06(4) Å with O-H ... O angles of 168(4)°, 144(4)°, and 146(4)° respectively. The inner hydrogen atom is located in a position consistent with that found earlier in dickite and muscovite which are the only dioctahedral layer silicates studied by neutron diffraction to date. The O-H vector makes an angle of 34° with the (001) plane, away from the octahedral sheet, and the projection of the vector on to (001) is at ~30° to the b axis.

Резюме

Резюме

Усовершенствование структуры каолинита при помощи техники Ретвельда по нейтро-новому профилю определило расположение неводородных атомов, которое незначительно отличалось от расположения, определенного Б. Б. Звягиным в 1960 году. Все атомы водорода были определены; три внутренно-поверхностные атомы водорода были включены в межслойные водородные связи с расстояниями 2,94(4), 2,95(4), и 3,06(4) Л и углами О-Н ... О, равными 168(4)°, 144(4)°, и 146(4)°, соответственно. Внутренний атом водорода находится в положении, согласующемся с положением, найденном ранее в диките и мусковите, которые до сих пор явдяются единственными двухвосьмигранными слоистыми силикатами, исследованными путем нейтронной дифракции. Вектор О-Н наклонен к плоскости (001) под углом 34°, по направлению от восьмигранного слоя, а проекция вектора на плоскость (001) составляет угол 30° с осью b. [E.G.]

Resümee

Resümee

Es wurde eine Strukturverfeinerung von Kaolinit durchgeführt, wobei die Rietveld'sche Neu-tronenprofilverfeinerungstechnik verwendet wurde. Diese Untersuchung ergab für die Nichtwasserstoffatome Positionen, die sich von denen, die z.B. B. B. Zvyagin (1960) angegeben hat, nicht wesentlich unterscheiden. Alle Wasserstoffpositionen wurden bestimmt; die drei Wasserstoffatome auf der inneren Oberfläche sind an der Zwischenschichtwasserstoffbindung beteiligt, die Abstände von 2,95(4), 2,95(4), und 3,06(4) Å mit einem O-H ... O Winkeln von 168(4)°, 144(4)°, und 146(4)° aufweisen. Das innere Wasserstoffatom ist in einer Position, die mit der bereits früher in Dickit und Muskovit bestimmten Position übereinstimmt. Dickit und Muskovit sind die einzigen dioktaedrischen Schichtsilikate, die bisher mit Neutronendiffraktion untersucht wurden. Der O-H Vektor bildet einen Winkel von 34° mit der (001) Ebene von der Oktaederschicht weg. Die Projektion des Vektors auf (001) bildet einen Winkel von etwa 30° zur b-Achse. [U.W.]

Résumé

Résumé

Un raffinement de la structure de la kaolinite en utilisant la technique de raffinement de profil de neutrons de Rietveld a donné des positions d'atomes non-hydrogène qui ne différaient pas de manière significative de celles données par V. V. Zvyagin en 1960. On connaît les positions de tous les atomes hydrogène; les trois atomes d'hydrogène de la surface intérieure sont impliqués dans des liens hydrogène intercouche, avec des longueurs de 2,95(4), 2,95(4), et 3,06(4) Å avec des angles OH ... O de 168(4)°, 144(4)°, et 146(4)°, respectivement. L'atome d'hydrogène intérieur se trouve dans une position pareille à celle trouvée précédemment dans la dickite et dans la muscovite, qui sont jusqu’à présent les seuls silicates à couches dioctaèdrales etudiées par diffraction de neutrons. Le vecteur O-H fait un angle de 34° avec le plan (001), dans un sens opposé à la feuille octaèdrale, et la projection du vecteur sur (001) est à ~30° de l'axe b. [D.J.]

Type
Research Article
Copyright
Copyright © 1983, The Clay Minerals Society

References

Adams, J. M. and Hewat, A. W., 1981 Hydrogen atom positions in dickite Clays & Clay Minerals 29 316319.CrossRefGoogle Scholar
Adams, J. M., Reid, P. I., Thomas, J. M. and Walters, M. J., 1976 On the hydrogen atom position in a kaolinite: formamide intercalate Clays & Clay Minerals 24 267269.CrossRefGoogle Scholar
Brindley, G. W. and Nakahira, M., 1958 Further considerations of the crystal structure of kaolinite Mineral. Mag. 31 781786.Google Scholar
Brincley, G. W. and Robinson, K., 1945 Structure of kaolinite Nature 156 661663.CrossRefGoogle Scholar
Brindley, G. W. and Robinson, K., 1946 The structure of kaolinite Mineral. Mag. 27 242253.Google Scholar
Chidambaram, R., 1962 Structure of the hydrogen-bonded water molecule in crystals J. Chem. Phys. 36 23612365.CrossRefGoogle Scholar
Drits, V. A. and Kashaev, A. A., 1960 An X-ray study of a single crystal of kaolinite Soviet Physics Crystallogr. 5 207210.Google Scholar
Farmer, V. S., 1964 Infrared absorption of hydroxyl groups in kaolinite Science 145 11891190.CrossRefGoogle ScholarPubMed
Farmer, V. S. and Russell, J. D., 1964 The infrared spectra of layer silicates Spectrochim. Acta 20 11491173.CrossRefGoogle Scholar
Fuller, W., 1959 Hydrogen band lengths and angles observed in crystals J. Phys. Chem. 63 17051717.CrossRefGoogle Scholar
Giese, R. F. Jr., 1973 Interlayer bonding in kaolinite, dickite, and nacrite Clays & Clay Minerals 21 145149.CrossRefGoogle Scholar
Giese, R. F. Jr., 1979 Hydroxyl orientations in 2:1 phyllosilicates Clays & Clay Minerals 27 213223.CrossRefGoogle Scholar
Giese, R F Jr and Datta, P., 1973 Hydroxyl orientation in kaolinite, dickite and nacrite Amer. Mineral. 58 471479.Google Scholar
Hamilton, W. C., 1962 The structure of solids Ann. Rev. Phys. Chem. 13 1940.CrossRefGoogle Scholar
Hamilton, W. C. and Ibers, J. A., 1968 Hydrogen Bonding in Solids New York Benjamin Inc. 208211.Google Scholar
Hewat, A. W., 1973 The Rietveld computer program for the profile refinement of neutron diffraction powder patterns modified for anisotropic thermal vibration Rutherford Report Harwell, U.K Atomic Energy Research Establishment.Google Scholar
Hewat, A. W., Block, S. and Hubbard, C. R., 1980 Profile refinement of neutron powder diffraction patterns Accuracy in Powder Diffraction Washington, D.C. Nat. Bur. Standards 111142.Google Scholar
Hewat, A. W. and Bailey, A., 1976 DIA. A high resolution neutron powder diffractometer with a bank of mylar collimators Nucl. Instrum Methods 137 463471.CrossRefGoogle Scholar
Ledoux, R. L. and White, J. L., 1964 Infrared study of the OH groups in expanded kaolinite Science 143 244246.CrossRefGoogle ScholarPubMed
Mansfield, S. F. and Bailey, S. W., 1972 Twin and pseu-dotwin intergrowths in kaolinite Amer. Mineral. 57 411425.Google Scholar
Newnham, R. E., 1961 A refinement of the dickite structure and some remarks on the polymorphism in kaolin minerals Mineral. Mag. 32 683704.Google Scholar
Newnham, R. E. and Brindley, G. W., 1956 The crystal structure of dickite Acta Crystallogr. 9 759764.CrossRefGoogle Scholar
Rebbah, H., Pannetier, J. and Raveau, B., 1982 Localization of hydrogen in the layer oxide HTiNbO5 J. Solid State Chem. 41 5762.CrossRefGoogle Scholar
Rietveld, H. M., 1969 A profile refinement method for nuclear and magnetic structures J. Appl. Crystallogr. 2 6571.CrossRefGoogle Scholar
Rothbauer, R., 1971 Untersuchung eines 2M1-Muskovits mit Neutronenstrahlen Neues Jahrb. Mineral. Monatsh. 4 143154.Google Scholar
Rozdestvenskaya, I. V., Drits, V. A., Bookin, A. S. and Finko, V.I., 1982 Location of protons and structural peculiarities of dickite Mineralogitchesky Zh. 4 2535.Google Scholar
Serratosa, J. M., Hidalgo, A. and Vinas, J. M., 1962 Orientation of OH bonds in kaolinite Nature 195 486487.CrossRefGoogle Scholar
Serratosa, J. M., Hidalgo, A. and Vinas, J. M., 1963 Infrared study of the OH groups in kaolin minerals Proc. Int. Clay Conf., Stockholm 1963 1 1726.Google Scholar
Stewart, J. M., Kruger, S J., Ammon, H. L., Dickinson, S H., and Hall, S. R. (1972) The X-ray System-version of June 1972. Update of April 1974: Techn. Rept. TR–194, Computer Science Center, Univ. Maryland, College Park, Maryland.Google Scholar
Wada, K., 1967 A study of hydroxyl groups in kaolin minerals utilizing selective deuteration and infrared spectroscopy Clay Miner. 7 5161.CrossRefGoogle Scholar
Wieckowski, T. and Wiewiora, A., 1976 New approach to the problem of interlayer bonding in kaolinite Clays & Clay Minerals 24 219223.CrossRefGoogle Scholar
Wolff, R. G., 1963 Structural aspects of kaolinite using infrared absorption Amer. Mineral. 48 390399.Google Scholar
Zvyagin, B. B., 1960 Electron-diffraction determination of the structure of kaolinite Soviet Physics Crystallogr. 5 3242.Google Scholar