Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T17:14:21.372Z Has data issue: false hasContentIssue false

HRTEM Image Filtration: Nanostructural Analysis of a Pillared Clay

Published online by Cambridge University Press:  01 January 2024

Christian Clinard
Affiliation:
Centre de Recherche sur la Matière Divisée, CNRS-Université d'Orléans, 1b, rue de La Férollerie, 45071, Orléans Cedex 2, France
Tushar Mandalia
Affiliation:
Centre de Recherche sur la Matière Divisée, CNRS-Université d'Orléans, 1b, rue de La Férollerie, 45071, Orléans Cedex 2, France
Denise Tchoubar
Affiliation:
CRT Plasma Laser, 14 rue d'Issoudun - B.P 6744, 45067 Orléans Cedex 2, France
Faiza Bergaya*
Affiliation:
Centre de Recherche sur la Matière Divisée, CNRS-Université d'Orléans, 1b, rue de La Férollerie, 45071, Orléans Cedex 2, France
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Nanostructural analysis of pillared clay samples using high-resolution transmission electron microscopy has been developed. Montmorillonite samples were pillared using partially hydrolyzed Al and Fe solutions. Two samples, M01 and M05, corresponding to Fe/(Fe+Al) ratios of 0.1 and 0.5, respectively, were analyzed. The different steps of image filtration, resulting from filtration by ring-shaped masks, are illustrated and discussed from lattice imaging of sample M01. This procedure is used to show the heterogeneous distribution of the basal spacings in the different ordered domains. Domains of mesoporosity and distribution of the different Fe species are studied specifically in the sample M05. The quantitative HRTEM results are discussed and compared with X-ray diffraction patterns obtained from the same sample.

Type
Research Article
Copyright
Copyright © 2003, The Clay Minerals Society

References

Bergaya, F. and Decarreau, A., (1990) Argiles à piliers Matériaux Argileux, Structures, Propriétés, et Applications France SFMC-GFA 511 538.Google Scholar
Bergaya, F. Dion, P. Alcover, J.F. Clinard, C. and Tchoubar, D., (1996) TEM studies of kaolinite thermal decomposition by controlled rate thermal analysis Journal of Material Science 31 50695075 10.1007/BF00355907.Google Scholar
Clinard, C. Rouzaud, J.N. and Pellenq, R.J.M., (2001) Analyse d’images de haute résolution en microscopie electronique par transmission. Application au cas des carbones microtextures V.I.M Conference Proceedings France Nancy 29 34.Google Scholar
d’Emmerez de Charmoy, R., Mari, D., Barrault, J., Zivkov, C., Van Damme, H., Hassoun, N., Bergaya, F., Setton, R. and Gatineau, L. (1987) Patents FR 87 09 763 and FR 87 09 764 Procédé de préparation de nouveaux catalyseurs à base de montmorillonites et/ou de laponites pontées pour la conversion sélective du gaz de synthèse.Google Scholar
Douce, N. Djebaili-Chaumeix, N. Paillard, C.E. Clinard, C. and Rouzaud, J.N., (1999) Pyrolysis and oxidation of toluene behind reflected shock waves Proceedings of 4th International Conference on Combustion, Energy, Experiments and Modeling Italy Capri 251 258.Google Scholar
Fompérie, L., Amigouet, P., Bergaya, F. and Mandalia, T. (2000) Patent FR 00 07 017 Nanocomposites à base d’argile pontée et pontée organo et câble contenant un tel nanocomposite.Google Scholar
Fompérie, L., Amigouet, P., Bergaya, F. and Mandalia, T. (2001) Patent EP 1 160 277 A1. A nanocomposite based on a bridged clay, and a cable, comprising said composite.Google Scholar
Levitz, P. and Tchoubar, D., (1992) Disordered porous solid: From chord distribution to small angle scattering Journal of Physics 2 771 790.Google Scholar
Mandalia, T., Messad, D., Crespin, M. and Bergaya, F. (1998) Large interlayer repeat distance observed for montmorillonite treated by mixed Al-Fe and Fe pillaring solutions. Chemical Communications, 21112112.Google Scholar
Mandalia, T., Clinard, C. and Bergaya, F. (2003) Mesoporous smectites obtained by addition of Al and Fe pillaring solutions. Microporous and Mesoporous Materials (submitted).Google Scholar
Rouzaud, J.N. and Clinard, C. (2003) Quantitative high resolution transmission electron microscopy. A promising tool for carbon material characterisation. Fuel Processing Technology (in press).Google Scholar
Rouzaud, J.N., Galvez, A., Beyssac, O., Fontugne, C., Clinard, C. and Goffé, B. (1999) The multiscale organisation of carbon materials. Pp. 2528 in: Proceedings of the 10th International Conference on Coal Science, Taiwan.Google Scholar
Sharma, A. Kyotani, T. and Tomita, A., (1999) A new quantitative approach for microstructural analysis of coal char using HRTEM images Fuel 78 12031212 10.1016/S0016-2361(99)00046-0.Google Scholar
Tchoubar, D. Bottero, J.Y. Quienne, P. and Arnaud, M., (1991) Partial hydrolysis of ferric chloride salt: Structural investigations by Photon Correlation Spectroscopy and Small Angle Scattering Langmuir 7 398402 10.1021/la00050a034.Google Scholar