Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T09:02:52.084Z Has data issue: false hasContentIssue false

High Resolution Electron Microscopy of Feldspar Weathering

Published online by Cambridge University Press:  01 July 2024

Richard A. Eggleton
Affiliation:
Geology Department, Australian National University, P.O. Box 4, Canberra, ACT 2600, Australia
Peter R. Buseck
Affiliation:
Departments of Chemistry and Geology, Arizona State University, Tempe, Arizona 85281
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

High resolution imaging by transmission electron microscopy has revealed a mechanism for the weathering of intermediate microcline in a humid, temperate climate. Dissolution of the feldspar begins at the boundary of twinned and untwinned domains and produces circular holes which enlarge to form negative crystals. Amorphous, ring-shaped structures develop, about 25 Å in diameter, within the larger holes. These rings, in turn, crystallize to an arcuate phase having a 10-Å basal spacing and then to crinkled sheets of illite or dehydrated montmorillonite. The 10-Å layer silicate shows an irregular stacking sequence, including 10-,-20-, and 30-Å sequences. Included plagioclase crystals show a similar mechanism of weathering and, moreover, are more intensely weathered.

Резюме

Резюме

Высоко разрешающие изображения, полученные трансмиссионной электронной микроскопией, позволили выявить механизм выветривания промежуточного мироклина во влажном умеренном климате. Растворение полевого шпата начинается на границе сдвоенных и несдвоенных доменов, образуя круглые выемки, которые, увеличиваясь, формируют отрицательные кристаллы. В пределах больших выемок образуются аморфные, кольцеобразные структуры около 25 Å в Диаметре. Эти кольца, в свою очередь, кристаллизуются в дугообразную фазу, имеющую базальные промежутки в 10 Å и затем в морщинистые листы иллита или обезвоженного монтмориллонита. 10-Å слоистый силикат прояавляет ненормальную последовательность слоев, включая последовательности 10, 20, и 30 Å. Окклюдированные плагиоклазовые кристаллы проявляют сходный механизм выветривания и, к тому же, выветриваются более интенсивно. [N.R.]

Resümee

Resümee

Die hohe Auflösung, die durch die Transmissionselektronenmikroskopie erreicht wird, zeigt einen Verwitterungsmechanismus von intermediärem Mikroklin in einem humiden, gemäßigten Klima. Die Auflösung von Feldspat beginnt an der Grenze zwischem verzwillingten und nichtverzwillingten Domänen und erzeugt kreisförmige Löcher, die größer werden und negative Kristalle bilden. Es entstehen amorphe, ringförmige Strukturen mit einem Durchmesser von etwa 25 Å in den größeren Löchern. Diese Ringe wiederum kristallisieren zu einer bogenförmigen Phase, die einen Basisabstand von 10 Å hat und anchließend zu runzligen Blättchen aus Illit oder dehydratisiertem Montmorillonit. Das 10 Å-Schichtsilikat zeigt eine unregelmäßige Stapelungsfolge, die 10 Å-, 20 Å- und 30 Å-Folgen beinhaltet. Eingeschlossene Plagioklaskristalle zeigen einen ähnlichen Verwitterungsmechanismus und sind darüberhinaus intensiver verwittert. [U.W.]

Résumé

Résumé

Des images à haute résolution obtenues par microscopie à transmission d’électrons ont révélé un mécanisme pour l'altération de la microcline intermédiaire dans un climat humide et tempéré. La dissolution du feldspath commence à la séparation des domaines jumelés et non-jumelés et produit des trous circulaires qui s'aggrandissent pour former des cristaux négatifs. Des structures amorphes d'environ 25 Å de diamètre, en forme d'anneau, se développent dans les trous les plus grands. Ces anneaux, à leur tour, se cristallisent en une phase arguée ayant un espacement de base de 10 Å et ensuite en des lames froncées d'illite ou de montmorillonite deshydratée. Le silicate à couches-10 Å montre une séquence irrégulière d'empilement comprenant des séquences de 10, 20, et 30 Å. Des cristaux de plagioclase occlus montrent un mécanisme d'altération semblable, et, de plus, sont plus intensément altérés. [D.J.]

Type
Research Article
Copyright
Copyright © Clay Minerals Society 1980

References

Alcover, S. F. Gatineau, L. Mering, J. and Kodama, H., (1977) The distribution of Ba cations in Vermiculite and vermiculitized micas: unpubl. manuscript .Google Scholar
Berner, R. A. and Holdren, C. R., (1977) Mechanism of feldspar weathering: some observational evidence Geology 5 369372.2.0.CO;2>CrossRefGoogle Scholar
Buseck, P. R. and Iijima, S., (1974) High resolution transmission electron microscopy of silicates Amer. Mineral. 59 121.Google Scholar
Eggleton, R. A., (1979) The ordering path for igneous K-feld-spar megacrysts Amer. Mineral. 64 906911.Google Scholar
Folk, R. L., (1955) Note on the significance of turbid feldspars Amer. Mineral. 40 356357.Google Scholar
Helgeson, H. C., (1971) Kinetics of mass transfer among silicates and aqueous solutions Geochim. Cosmochim. Acta 35 421469.CrossRefGoogle Scholar
Iijima, S. and Buseck, P. R., (1978) Experimental study of disordered mica structures by high resolution electron microscopy Acta Cryst. A34 709719.CrossRefGoogle Scholar
Keller, W. E., (1976) Scan electron micrographs of kaolins collected from diverse environments or origin3-I Clays & Clay Minerals 24 107113.CrossRefGoogle Scholar
Keller, W. E., (1978) Kaolinization of feldspars as displayed in scanning electron micrographs Geology 6 184188.2.0.CO;2>CrossRefGoogle Scholar
Meunier, A. F. and Velde, B., (1979) Weathering mineral facies in altered granites. The importance of small-scale local equilibria Mineral. Mag. 43 261268.CrossRefGoogle Scholar
Nixon, R. A., (1979) Differences in incongruent weathering of plagioclase and microcline3-Cation leaching versus precipitates Geology 7 221224.2.0.CO;2>CrossRefGoogle Scholar
O’Keefe, M. A. and Buseck, P. R. (1979) Calculation of the high resolution TEM images of minerals: Trans. Amer. Cryst. Assoc. 15 (in press).Google Scholar
Page, R. and Wenk, H. R., (1979) Phyllosilicate alteration of plagioclase studied by transmission electron microscopy Geology 7 393397.2.0.CO;2>CrossRefGoogle Scholar
Parham, W. E., (1969) Formation of halloysite from feldspar: low temperature artificial weathering versus natural weathering Clays & Clay Minerals 17 1322.CrossRefGoogle Scholar
Petrovič, R., (1976) Rate control in feldspar dissolution—II. The protective effect of precipitates Geochim. Cosmochim. Acta 40 15091521.CrossRefGoogle Scholar
Suttner, L. J. Mack, G. James, W. C. and Young, S. W., (1976) Relative alteration of microcline and sodic plagioclase in semi-arid and humid climates Geol. Soc. Amer. Abstracts Programs 8 512.Google Scholar
Veblen, D. R. and Buseck, P. R., (1979) Chain width order and disorder in biopyriboles Amer. Mineral. 64 687700.Google Scholar