Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T07:44:49.551Z Has data issue: false hasContentIssue false

Hematite and Goethite from Duricrusts Developed by Lateritic Chemical Weathering of Precambrian Banded Iron Formations, Minas Gerais, Brazil

Published online by Cambridge University Press:  28 February 2024

E. Ramanaidou
Affiliation:
CSIRO -Division of Exploration and Mining, Private Bag, P.O. Wembley, W.A. 6014, Australia
D. Nahon
Affiliation:
Geosciences de l'Environnement URA 132 CNRS, Faculté des Sciences St Jérôme, Université d'Aix-Marseille III Case 431, 13397 Marseille Cedex 20, France
A. Decarreau
Affiliation:
Argiles, Sols, Alterations. URA 721 CNRS,** Universite de Poitiers, 40 Av. Recteur Pineau, 86000, Poitiers, France
A. J. Melfi
Affiliation:
Departamento de Geofisica/Núcleo de Pesquisa em Geoquímica e Geofisica da Litosfera, Universidade de São Paulo Av. Miguel Stefano 4200, Sâo Paulo, Brazil
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The upper 15−20 m of a 200 m thick lateritic weathering profile on Precambrian itabirites of Capanema, Brazil, reveals a genetic pathway for the formation of hematitic and goethitic nodules in the ferruginous crust through a very fine grain Al-hematite and Al-goethite mixture, called here the brick-red-material (brm). This evolution develops between the soft saprolite and a 10 m thick indurated ferruginous crust. The soft saprolite retains the original structures of the itabirite and is characterized by almost complete dissolution of quartz, the development of goethite septa, and the partial dissolution of primary hematite. Near the contact with the overlying ferruginous crust, the brm is gradually filling voids as well as replacing primary hematite and goethite in the saprolite. In the upper indurated crust, the brm transforms into coarse structureless ferruginous nodules (aluminous hematites and goethites) and is the precursor of the hematito-goethitic nodules of the crusts. Crystallization of newly-formed Al-goethite and Al-hematite within the brm occurs without detectable amounts of amorphous iron oxides of ferrihydrite precursors.

Type
Research Article
Copyright
Copyright © 1996, The Clay Minerals Society

References

Ambrosi, J.P. and Nahon, D.. 1986. Petrological and chemical differentiation of lateritic iron crusts profiles. Chem Geol 57: 371393.CrossRefGoogle Scholar
Combes, J.M., Manceau, A. and Calas, G.. 1990. Formation of ferric oxides from aqueous solutions: a polyhedral approach by X-Ray spectroscopy; II. Hematite formation from ferric gels. Geochem Cosmoch Acta 54: 10831091.CrossRefGoogle Scholar
de Campos, E.N.. 1980. Etude de l'altération en pays tropical humide d'une formation précambrienne à itabirites et roches volcaniques. Serra do Carajas, Amazonie, Brésil. Thèse Univ. Strasbourg, unpubl. 300 p.Google Scholar
Dorr, J.V.N. II. 1969. Physiographic, stratigraphic and structural development of the Quadrilatero Ferrifero, Minas Gerais, Brazil. USGS Prof. Paper, 641A. 110 p.CrossRefGoogle Scholar
Eichler, J.. 1968. O enrequecimento residual e supergenico dos itabiritos atraves do intemperismo. Geologia 1: 2940.Google Scholar
Fysh, S.A. and Clark, P.E.. 1982. Aluminous hematite: a Mössbauer study. Phy Chem Miner 8: 257267.CrossRefGoogle Scholar
Fysh, S.A., Cashion, J.D. and Clark, P.E.. 1983a. Mössbauer effect studies of iron in kaolin. J. Structural iron. Clays & Clay Miner 31: 285292.CrossRefGoogle Scholar
Fysh, S.A., Cashion, J.D. and Clark, P.E.. 1983b. Mössbauer effect studies of iron in kaolin II Surface iron. Clays & Clay Miner 31: 293298.CrossRefGoogle Scholar
Golden, D.C., Bowen, L.H., Weed, S.B. and Bigham, J.M.. 1979. Mössbauer studies of synthetic and soil-occuring aluminium substituted goethites. Soil Sci Soc Am J 43: 802808.CrossRefGoogle Scholar
Janot, C., Gibert, H. and Tobias, C.. 1973. Caractérisation des kaolinites ferrifères par spectrométrie Mössbauer. Bull Soc Fr Mineral Cristallogr 96: 281291.Google Scholar
Kampf, N. and Schwertmann, U.. 1982. Goethite and hematite in a climosequence in Southern Brazil and their application in classification of kaolinite soils. Geoderma 29: 2739.CrossRefGoogle Scholar
Klug, H.P. and Alexander, L.E.. 1962. X-Ray Diffraction Procedures. New York: John Wiley and Sons, Inc.Google Scholar
Klug, H.P. and Alexander, L.E.. 1974. X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials. New York: J. Wiley and Sons. 966 p.Google Scholar
Lewis, D.G. and Schwertmann, U.. 1979. The influence of aluminium on the formation of iron oxides. IV. The influence of [Al], [OH], and temperature. Clays & Clay Miner 27: 195200.CrossRefGoogle Scholar
Melfi, A.J., Pedro, G., Nalovic, L. and Queiroz Netto, J.P.. 1976. Etude sur l'altération géochimique des itabirites du Brésil. Cah. ORSTOM, Sér. Pédologie, XIV 3: 179192.Google Scholar
Merino, E., Nahon, D. and Wang, Y.. 1993. Kinetics and mass transfer of pseudomorphic replacement: application to replacement of parent minerals and kaolinite by Al, Fe and Mn oxides during weathering. Am J Sci 293: 135155.CrossRefGoogle Scholar
Millot, G. and Bonifas, M.. 1955. Transformations isovolumétriques dans les phénomènes de latéritisation et de bauxitisation. Bull Serv Carte Géol Alsace-Lorraine 8: 310.CrossRefGoogle Scholar
Morris, R.C.. 1983. Supergene alteration of banded iron formation. In: Trendall, A.F., Norris, R.C., editors. Iron Formations: Facts and Problems. Amsterdam: Elsevier. 513534.CrossRefGoogle Scholar
Morris, R.C.. 1985. Genesis of iron ore in banded iron-formation by supergene and supergene-metamorphic processes. A conceptual model. In: Wolf, K.H.., editor. Handbook of Strata-Bound and Stratiform Ore Deposits. Amsterdam: Elsevier. 13: 73235.Google Scholar
Murad, E.. 1982. The characterization of goethite by Mössbauer spectroscopy. Am Miner 67: 10071011.Google Scholar
Murad, E. and Schwertmann, U.. 1986. The influence of Al-sub-stitution and crystallinity on room temperature Mössbauer spectrum of hematite. Clays & Clay Miner 34: 16.CrossRefGoogle Scholar
Murad, E.. 1987. Properties and behavior of iron oxides as determined by Mössbauer spectroscopy. In: Stucki, J.W., Goodman, B.A., Schwertmann, U.., eds. Iron in soils and Clay Minerals. Dordrecht: D. Reidel. 309350.Google Scholar
Murad, E. and Wagner, U.. 1991. Mössbauer spectra of kaolinite, halloysite and the firing products of kaolinite: new results and a reappraisal of published work. Neues Jahrburh Miner Abh 162: 281309.Google Scholar
Nahon, D.. 1970. Nouvelles observations sur les faciès d'altérations anciennes au Sénégal et en Mauritanie. Travaux des Laboratoires des Sciences de la Terre, St-Jérôme Marseille, série A 2. 50 p.Google Scholar
Nahon, D.. 1976. Cuirasses ferrugineuses et encroûtements calcaires au Sénégal occidental et en Mauritanie. Systèmes évolutifs: géochimie, structures relais et coexistence. Strasbourg: Mém Sci Géol 44: 229 p.Google Scholar
Nahon, D., Janot, C., Karpoff, A.M., Paquet, H. and Tardy, Y.. 1977. Mineralogy, petrography and structures of iron crusts developed on sandstones in the western part of Senegal. Geoderma 19: 263277.CrossRefGoogle Scholar
Nahon, D.. 1991. Introduction to the petrology of soils and chemical weathering. New York: Wiley and Sons. 313p.Google Scholar
Perinet, G. and Lafont, R.. 1972. Sur les paramètres cristallographiques des hématites alumineuses. CR Acad Sci Paris C 275: 10211024.Google Scholar
Ramanaidou, E.. 1989. Evolution supergène des itabirites protérozoïques de la mine de fer de Capanema, Minas Gerais, Brésil. Thèse Univ. Poitiers, unpublished, 183 p.Google Scholar
Rassineux, F., Beaufort, D., Merceron, T., Bouchet, A. and Meunier, A.. 1988. Use of localization detector for XRD of very small quantities of matter. Clays & Clay Minerals 36: 187189.CrossRefGoogle Scholar
Schulze, D.G.. 1982. The identification of iron oxides by differential XRay Diffraction and the influence of aluminium substitution on the structure of goethite. Ph. D. thesis, Univ. Munich, unpublished.Google Scholar
Schwertmann, U.. 1966. Inhibitory effect of soil organic matter on the crystallization of amorphous ferric oxide. Nature 212: 5062, 645646.Google Scholar
Schwertmann, U.. 1986. The effect of pedogenetic environments on iron oxide minerals. Adv Soil Sci 1: 171200.CrossRefGoogle Scholar
Schwertmann, U.. 1988a. Some properties of soil and synthetic iron oxides. In: Stucki, J.W., Goodman, B.A., Schwertmann, U., editors. Iron in soils and clay minerals. Dordrecht, Reidel. 203250.CrossRefGoogle Scholar
Schwertmann, U.. 1988b. Occurence and formation of iron oxides in various pedoenvironments. In: Iron in soils and clay minerals. Stucki, J.W., Goodman, B.A., Schwertmann, U., editors. Dordrecht, Reidel. 267308.CrossRefGoogle Scholar
Schwertmann, U. and Kampf, N.. 1985. Properties of goethite and hematite in kaolinite soils of southern and central Brazil. Soil Sci 39: 344349.CrossRefGoogle Scholar
Stanjek, H. and Schwertmann, U.. 1992. The influence of aluminium on iron oxides. Part XVI: hydroxyl and aluminium substitution in synthetic hematites. Clays & Clay Miner 40: 347354.CrossRefGoogle Scholar
Tardy, Y. and Nahon, D.. 1985. Geochemistry of laterites, stability of Al-goethite, Al-hematite and Fe3+ kaolinite in bauxites and ferricretes. Am J Sci 285: 865903.CrossRefGoogle Scholar
Tournarie, M.. 1969. Evaluation optionale des inconnues d'un système étatique non linéaire. I. Principe et Théorie. J Phys 30: 737751.CrossRefGoogle Scholar