Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-25T19:52:02.277Z Has data issue: false hasContentIssue false

The Heat Capacity of the Serpentine Subgroup Mineral Berthierine (Fe2.5Al0.5)[Si1.5Al0.5O5](OH)4

Published online by Cambridge University Press:  01 January 2024

Christian Bertoldi*
Affiliation:
Abteilung Mineralogie und Materialwissenschaften, Fachbereich Geographie, Geologie und Mineralogie, Paris Lodron Universität Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria
Edgar Dachs
Affiliation:
Abteilung Mineralogie und Materialwissenschaften, Fachbereich Geographie, Geologie und Mineralogie, Paris Lodron Universität Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria
Lado Cemic
Affiliation:
Institut für Geowissenschaften, Christian Albrechts Universität zu Kiel, Ludewig-Meyn-Strasse 10, 24118 Kiel, Germany
Thomas Theye
Affiliation:
Institut für Mineralogie und Kristallchemie, Universität Stuttgart, Azenbergstrasse 18, 70174 Stuttgart, Germany
Richard Wirth
Affiliation:
GeoForschungsZentrum Potsdam, Telegraphenberg, 14473 Potsdam, Germany
Werner Groger
Affiliation:
Forschungsinstitut für Elektronenmikroskopie und Feinstrukturforschung, Technische Universität Graz, Steyrergasse 17, 8010 Graz, Austria
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The serpentine subgroup mineral berthierine was synthesized as a metastable precursor of the chlorite group mineral chamosite in cold seal pressure vessels at 575°C, 0.5 GPa and fO2-conditions of the NNO buffer from a glass of almandine bulk composition. The run products were investigated with X-ray powder diffraction (XRD), Mossbauer spectroscopy and electron microprobe analysis. One run product was also investigated by high-resolution transmission electron microscopy (HRTEM) and its heat capacity measured by heat pulse calorimetry and by differential scanning calorimetry in the temperature range 5–323 K. The XRD and HRTEM investigations clearly showed that the periodicity along the c axis of this sample is 7 Å demonstrating that the serpentine subgroup mineral berthierine of composition (Fe2+1.83Fe3+0.33Al0 67)[Si1.33Al0.67O5](OH)4 has formed in the synthesis experiments.

Integration of our heat capacity data, corrected to the composition (Fe2.5Al0.5)[Si1.5Al0.5O5](OH)4 for end-member berthierine, yields a standard entropy of 284.1±0.3 J mol−1 K−1. The Cp polynomial Cp = 610.72 − 5140.0 × T−0.5 − 5.8848 × 106T−2 + 9.5444 × 108T–3 is recommended for thermodynamic calculations above 298 K involving berthierine.

Type
Research Article
Copyright
Copyright © The Clay Minerals Society 2005

References

Aagaard, P. Jahren, J.S. Harstad, A.O. Nilsen, O. and Ramm, M., (2000) Formation of grain-coating chlorite in sandstones; laboratory synthesized vs. natural occurrences Clay Minerals 35 261269 10.1180/000985500546639.CrossRefGoogle Scholar
Ahn, J.H. and Peacor, D.R., (1985) Transmission electron microscopic study of diagenetic chlorite in Gulf Coast argillaceous sediments Clays and Clay Minerals 33 328336 10.1346/CCMN.1985.0330309.CrossRefGoogle Scholar
Bailey, S.W., (1980) Summary of recommendations of the AIPEA nomenclature committee The Canadian Mineralogist 18 143150.Google Scholar
Bailey, S.W. and Bailey, S.W., (1988) Structures and compositions of other trioctahedral 1:1 phyllosilicates Hydrous Phyllosilicates (Exclusive of Micas) Washington, D.C. Mineralogical Society of America 169188 10.1515/9781501508998-011.CrossRefGoogle Scholar
Bailey, S.W., (1988) Odinite, a new dioctahedral-trioctahedral Fe3+-rich 1:1 clay mineral Clay Minerals 23 237247 10.1180/claymin.1988.023.3.01.CrossRefGoogle Scholar
Berman, R.G. and Brown, T.H., (1985) Heat capacity of minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2: representation, estimation, and high temperature extrapolation Contributions to Mineralogy and Petrology 89 168183 10.1007/BF00379451.CrossRefGoogle Scholar
Bertoldi, C. Benisek, A. Cemič, L. and Dachs, E., (2001) The heat capacity of two natural chlorite group minerals derived from differential scanning calorimetry Physics and Chemistry of Minerals 28 332336 10.1007/s002690100157.CrossRefGoogle Scholar
Bosenick, A G ChA and Cemic, L., (1996) Heat capacity measurements of synthetic pyrope-grossular between 320 and 1000 Khy differential scanning calorimetry Geochimica et Cosmochimica Acta 60 32153227 10.1016/0016-7037(96)00150-0.CrossRefGoogle Scholar
Cho, M. and Fawcett, J.J., (1986) A kinetic study of clinochlore and its high temperature assemblage, forsterite-cordieritespinel at 2 khar water pressure American Mineralogist 71 6877.Google Scholar
Dachs, E., (1994) Annite stability revised. 1. Hydrogen-sensor data for the reaction Annite = sanidine + magnetite + H2 Contributions to Mineralogy and Petrology 117 229240 10.1007/BF00310865.CrossRefGoogle Scholar
Dachs, E. and Bertoldi, C., (2005) Precision and accuracy of the heat-pulse calorimetric technique: Low-temperature heat capacities of milligram-sized synthetic mineral samples European Journal of Mineralogy .CrossRefGoogle Scholar
Deer, W.A. Howie, R.A. and Zussman, J., (1992) An Introduction to the Rock-forming Minerals New York Longman Scientific and Technical.Google Scholar
Dittmars, D.A. Ishihara, S. Chang, S.S. Bernstein, G. and West, E.D., (1982) Measurement of the relative enthalpy of pure α-Al2O3 (NBS heat capacity and enthalpy standard reference material no. 720) from 10 to 1,950 K Journal of Research of the Natural Bureau of Standards 87 59.Google Scholar
Ehrenherg, S.N., (1993) Preservation of anomalously high porosity in deeply buried sandstones by grain-coating chlorite: examples Norwegian Continental Shelf American Association of Petroleum Geologists Bulletin 77 12601286.Google Scholar
Eugster, H.P. and Wones, D.R., (1962) Stability relations of the ferruginous hiotite, annite Journal of Petrology 3 82125 10.1093/petrology/3.1.82.CrossRefGoogle Scholar
Gillery, F.H., (1959) X-ray study of synthetic Mg-Al serpentines and chlorites American Mineralogist 44 143152.Google Scholar
Guggenheim, S. Alietti, A. Drits, V.A. Formoso, M.L.L. Galán, E. Köster, H.M. Paquet, H. Watanahe, T. ex officio members Bain, D.C. Editor, Clay MineralsHudnall, W.H. Editor, ClaysClay Minerals, Report of the Association Internationale Pour L’Étude des Argiles (AIPEA) Nomenclature Committee for 1996 Clays and Clay Minerals (1997) 45 298300 10.1346/CCMN.1997.0450219.CrossRefGoogle Scholar
Hillier, S., (1994) Pore-lining chlorites in siliclastic reservoir sandstones: electron microprohe, SEM, and XRD data, and implications for their origin Clay Minerals 29 665679 10.1180/claymin.1994.029.4.20.CrossRefGoogle Scholar
Holland, T.J.B., (1989) Dependence of entropy on volume for silicate and oxide minerals: A review and a predictive model American Mineralogist 74 513.Google Scholar
Holland, T.J.B. and Powell, R., (1998) An internally consistent thermodynamic data set for phases of petrological interest Journal of Metamorphic Geology 16 309343 10.1111/j.1525-1314.1998.00140.x.CrossRefGoogle Scholar
Homibrook, E.R.C. and Longstaffe, F.J., (1996) Berthierine from the lower Cretaceous Clearwater Formation, Alberta, Canada Clays and Clay Minerals 44 121 10.1346/CCMN.1996.0440101.CrossRefGoogle Scholar
Hsu, L.C., (1968) Selected phase relationships in the system Al-Mn-Fe-Si-O-H: A model for garnet equilibria Journal of Petrology 9 4083 10.1093/petrology/9.1.40.CrossRefGoogle Scholar
Iijima, A. and Matsumoto, R., (1982) Berthierine and chamosite in coal measures of Japan Clays and Clay Minerals 30 264274 10.1346/CCMN.1982.0300403.CrossRefGoogle Scholar
James, R.S. Tumock, A.C. and Fawcett, J.J., (1976) The stability and phase relations of iron chlorite below 8.5 kh PH2O Contributions to Mineralogy and Petrology 56 125 10.1007/BF00375418.CrossRefGoogle Scholar
Kisch, H.J., Larsen, F. and Chilingar, G.V., (1983) Mineralogy and petrology of burial diagenesis (burial metamorphism) and incipient metamorphism in clastic rocks Diagenesis in Sediments and Sedimentary Rocks vol. 2 New York Elsvier 289493.Google Scholar
López-Munguira, A. and Nieto, F., (2000) Transmission electron microscopy study of very-low grade metamorphic rocks in Cambrian sandstones and shales, Ossa-Morena zone, Southwest Spain Clays and Clay Minerals 48 213223 10.1346/CCMN.2000.0480207.CrossRefGoogle Scholar
Lougear, A. Grodzicki, M. Bertoldi, C. Trautwein, X. Steiner, K. and Amthauer, G., (2000) Mössbauer and molecular orbital study of chlorites Physics and Chemistry of Minerals 27 258269 10.1007/s002690050255.CrossRefGoogle Scholar
Mata, V. Giorgetti, G. Arkai, P. and Peacor, D.R., (2001) Comparison of evolution of triooctahedral chlorite/berthierine/smectite in coeval metahsites and metapelites from diagenetic to epizonal grades Clays and Clay Minerals 49 318332 10.1346/CCMN.2001.0490406.CrossRefGoogle Scholar
Nelson, B.W. and Roy, R., (1958) Synthesis and stability of minerals in the system MgO-Al2O3-SiO2-H2O American Mineralogist 40 147178.Google Scholar
Odin, G.S., (1990) Clay mineral formation at the continentocean boundary: the verdine facies Clay Minerals 25 477483 10.1180/claymin.1990.025.4.06.CrossRefGoogle Scholar
Odin, G.S. Sen Gupta, B.K. and Odin, G.S., (1988) Geological significance of the verdine facies Green Marine Clays Amsterdam Elsevier 205219.CrossRefGoogle Scholar
Odin, G.S. Bailey, S.W. Amourice, M. Frohlich, F. Waychunas, G.S. and Odin, G.S., (1988) Mineralogy of the verdine facies Green Marine Clays Amsterdam Elsevier 159206.CrossRefGoogle Scholar
Porrenga, D.H., (1967) Glauconite and chamosite as depth indicators in the marine environments Marine Geology 5 495501 10.1016/0025-3227(67)90056-4.CrossRefGoogle Scholar
Ryan, P.C. and Hillier, S., (2002) Berthierine/chamosite, corrensite and discrete chlorite from evolved verdine and evaporite facies in the Jurassic Sundance Formation, Wyoming American Mineralogist 87 16071615 10.2138/am-2002-11-1210.CrossRefGoogle Scholar
Ryan, P.C. and Reynolds, R.C., (1996) The origin and diagenesis of grain-coating serpentine-chlorite in Tuscaloosa Formation sandstone, U.S. Gulf Coast American Mineralogist 81 213225 10.2138/am-1996-1-226.CrossRefGoogle Scholar
Schmidt, D. Livi, K.J.T. and Frey, M., (1999) Reaction progress in chloritic minerals: An electron microheam study of the Taveyanne greywacke, Switzerland Journal of Metamorphic Geology 17 229241 10.1046/j.1525-1314.1999.00195.x.CrossRefGoogle Scholar
Stølen, S. Glöckner, R. Grønvold, F. Atake, T. and Izumisawa, S., (1996) Heat capacity and nearly stoichiometric wiistite from 13 to 450 K American Mineralogist 81 973981 10.2138/am-1996-7-819.CrossRefGoogle Scholar
Toth, T.A. and Fritz, S.J., (1997) An Fe-berthierine from a cretaceous laterite: Part I. Characterization Clays and Clay Minerals 45 564579 10.1346/CCMN.1997.0450408.CrossRefGoogle Scholar
Tumock, A.C., (1960) The stability of iron chlorites Carnegie Institute of Washington Yearbook 59 98103.Google Scholar
Velde, B., (1985) Clay Minerals: a Physico-Chemical Explanation of their Occurrence Amsterdam and New York Elsvier.Google Scholar
Walker, J.R. and Thompson, G.R., (1990) Structural variations in chlorite and illite in a diagenetic sequence from the Imperial Valley. California Clays and Clay Minerals 38 315321 10.1346/CCMN.1990.0380311.CrossRefGoogle Scholar
Yoder, H.S. Jr., (1952) The MgO-Al2O3-SiO2-H2O system and the related metamorphic facies American Journal of Science 250-A 569627.Google Scholar