Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T01:21:58.714Z Has data issue: false hasContentIssue false

Growth of Smectite from Leached Layer During Experimental Alteration of Albite

Published online by Cambridge University Press:  28 February 2024

Motoharu Kawano
Affiliation:
Department of Environmental Sciences and Technology, Faculty of Agriculture Kagoshima University, 1-21-24 Korimoto, Kagoshima 890, Japan
Katsutoshi Tomita
Affiliation:
Institute of Earth Sciences, Faculty of Science, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Experimental alteration of albite in deionized-distilled water at 150° to 225°C for various times up to 30 days was performed to elucidate formation processes for alteration products of albite in aqueous solution. The alteration products were examined by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy (TEM), and energy dispersive X-ray analysis (EDX). The surface compositions of albite before and after alteration were investigated by X-ray photoelectron spectroscopy (XPS). TEM clearly showed that an amorphous leached layer was produced on the albite surface at the earliest alteration stage together with small amounts of allophane. The leached layer increased successively in thickness and tended to be detached from the albite surface as alteration proceeded. Noncrystalline fibers less than 0.5 µm in length appeared within the leached layer matrix and transformed into thin flaky smectite and small amounts of K-mica. The leached layer gave electron diffraction patterns with a diffuse halo, whereas the flaky smectite displayed rings at 4.51, 2.61, and 1.54 Å. EDX confirmed that the flaky smectite consisted mainly of Si and Al, and small amounts of Na. The smectite was formed in the stability field of Na-smectite for the system of Na2O-Al2O3-SiO2-H2O.

Type
Research Article
Copyright
Copyright © 1994, Clay Minerals Society

References

Aagaard, P., and Helgeson, H. C., (1982) Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions. I. Theoretical considerations: Amer. J. Sci. 282, 237285.CrossRefGoogle Scholar
Althaus, E., and Tirtadinata, E., (1989) Dissolution of feldspar: The first step: in Water-Rock Interaction, Miles, D. L., ed., Balkema, Rotterdam, 1517.Google Scholar
Bailey, S. W., (1984) Micas: in Reviews in Mineralogy, Vol. 3, Mineralogical Society of America, Chelsea, Michigan, 584 pp.Google Scholar
Berner, R. A., (1978) Rate control of mineral dissolution under Earth surface conditions: Amer. J. Sci. 278, 12351252.CrossRefGoogle Scholar
Berner, R. A., (1981) Kinetics of weathering and diagenesis: in Reviews in Mineralogy, Vol. 8, Lasaga, A. C., and Kirkpatrick, R. J., eds., The Mineralogical Society of America, Chelsea, Michigan, 111134.Google Scholar
Berner, R. A., and Holdren, G. R. Jr. 1977() Mechanism of feldspar weathering: Some observational evidence: Geology 5, 369372.2.0.CO;2>CrossRefGoogle Scholar
Blum, A. E., and Lasaga, A. C., (1988) Role of surface speciation in the low-temperature dissolution of minerals: Nature 331, 431433.CrossRefGoogle Scholar
Blum, A. E., and Lasaga, A. C., (1991) The role of surface speciation in the dissolution of albite: Geochim. Cosmochim. Acta 55, 21932201.CrossRefGoogle Scholar
Busenberg, E., (1978) The products of the interaction of feldspar with aqueous solution at 25°C: Geochim. Cosmochim. Acta 42, 16791686.CrossRefGoogle Scholar
Busenberg, E., and Clemency, C. V., (1976) The dissolution kinetics of feldspar at 25°C and 1 atm CO2 partial pressure: Geochim. Cosmochim. Acta 40, 4149.CrossRefGoogle Scholar
Casey, W. H., Westrich, H. R., and Arnold, G. W., (1988) Surface chemistry of labradorite feldspar reacted with aqueous solutions at pH = 2, 3 and 12: Geochim. Cosmochim. Acta 52, 27952807.CrossRefGoogle Scholar
Casey, W. H., Westrich, H. R., Arnold, G. W., and Banfield, J. F., (1989a) The surface chemistry of dissolving labradorite feldspar: Geochim. Cosmochim. Acta 53, 821832.CrossRefGoogle Scholar
Casey, W. H., Westrich, H. R., Massis, T., Banfield, J. F., and Arnold, G. W., (1989b) The surface of laboradorite feldspar after acid hydrolysis: Chem. Geol. 78, 205218.CrossRefGoogle Scholar
Casey, W. H., and Bunker, B., (1990) Leaching of minerals and glass surfaces during dissolution: in Mineral-Water Interface Geochemistry, Hochella, M. F. Jr. and White, A. F., eds., Reviews in Mineralogy, Vol. 13, Mineralogical Society of America, New York, 397426.CrossRefGoogle Scholar
Casey, W. H., Westrich, H. R., and Holdren, G. R., (1991) Dissolution rates of plagioclase at pH = 2 and 3: Amer. Mineral. 76, 211217.Google Scholar
Chou, L., and Wollast, R., (1984) Study of the weathering of albite at room temperature and pressure with a fluidized bed reactor: Geochim. Cosmochim. Acta 48, 22052218.CrossRefGoogle Scholar
Chou, L., and Wollast, R., (1985) Steady-state kinetics and dissolution mechanisms of albite: Amer. J. Sci. 285, 963993.CrossRefGoogle Scholar
Correns, C. W., (1940) Die Chemische Verwitterung der Silikate: Naturwissenschaften 28, 369376.CrossRefGoogle Scholar
Correns, C. W., (1961) The experimental chemical weathering of silicates: Clay Mineral. Bull. 4, 249281.CrossRefGoogle Scholar
Correns, C. W., (1963) Experiments on the decomposition of silicates and discussion of chemical weathering: Clays & Clay Minerals 10, 43459.Google Scholar
Correns, C. W., and von Engelhardt, W., (1938) Nene Untersuchungen über die Verwitterung des Kalifeldspates: Chemie der Erde 12, 122.Google Scholar
Dibble, W. E. Jr. and Tiller, W. A., (1981) Non-equilibrium water/rock interactions. I. Model for interface-controlled reactions: Geochim. Cosmochim. Acta 45, 7992.CrossRefGoogle Scholar
Eggleton, R. A., and Buseck, P. R., (1980) High resolution electron microscopy of feldspar weathering: Clays & Clay Minerals 28, 173178.CrossRefGoogle Scholar
Goossens, D. A., Philippaerts, J. G., Gijbels, R., Pijpers, A. P., van Tendeloo, S., and Althaus, E., (1989) A SIMS, XPS, SEM, TEM and FTIR study of feldspar surfaces after reacting with acid solutions: in Water-Rock Interaction, Miles, D. L., eds., Balkema, Rotterdam, 271274.Google Scholar
Grasshoff, K., Ehrhardt, M., and Kremling, K., (1983) Methods of Seawater Analysis: Verlag Chemine, Weinheim, 419 pp.Google Scholar
Helgeson, H. C., (1971) Kinetics of mass transfer among silicates and aqueous solutions: Geochim. Cosmochim. Acta 35, 421469.CrossRefGoogle Scholar
Helgeson, H. C., (1972) Kinetics of mass transfer among silicates and aqueous solutions: Correction and clarification: Geochim. Cosmochim. Acta 36, 10671070.CrossRefGoogle Scholar
Hellmann, R., Eggleston, C. M., Hochella, M. F. Jr., and Crerar, D. A., (1990) The formation of leached layers on albite surfaces during dissolution under hydrothermal conditions: Geochim. Cosmochim. Acta 54, 12671281.CrossRefGoogle Scholar
Holdren, G. R. Jr. and Adams, J. E., (1982) Parabolic dissolution kinetics of silicate mineral: An artifact of non-equilibrium precipitation processes?: Geology 10, 186190.2.0.CO;2>CrossRefGoogle Scholar
Holdren, G. H. Jr. and Berner, R. A., (1979) Mechanism of feldspar weathering—I. Experimental studies: Geochim. Cosmochim. Acta 43, 11611171.CrossRefGoogle Scholar
Kawano, M., and Tomita, K., (1992) Formation of allophane and beidellite during hydrothermal alteration of volcanic glass below 200°C: Clays & Clay Minerals 40, 666674.CrossRefGoogle Scholar
Kawano, M., Tomita, K., and Kamino, Y., (1993) Formation of clay minerals during low temperature experimental alteration of obsidian: Clays & Clay Minerals 41, 431441.CrossRefGoogle Scholar
Knauss, K. G., and Wolery, T. J., (1986) Dependence of albite dissolution kinetics on pH and time at 25° and 70°C: Geochim. Cosmochim. Acta 50, 24812497.CrossRefGoogle Scholar
Lagache, M., (1965) Contribution à l'étude de l'altération des feldspaths, dans l'eau, entre 100 et 200°C sous diverses pressions de CO2, et application à la synthese des minéraux: Bull. Soc. Fr. Miner. Crist. 88, 223253.Google Scholar
Lagache, M., (1976) New data on the kinetics of the dissolution of alkali feldspar at 200°C in CO2 charged water: Geochim. Cosmochim. Acta 40, 157161.CrossRefGoogle Scholar
Lagache, M., Wyart, J., and Sabatier, G., (1961) Mécanisme de la dissolution des feldspaths alcalins dans l'eau pure ou chargée de CO2 à 200°C: Comp. Rend. 253, 22962299.Google Scholar
Luce, R. W., Bartlett, R. W., and Parks, G. A., (1972) Dissolution kinetics of magnesium silicates: Geochim. Cosmochim. Acta 36, 3550.CrossRefGoogle Scholar
Muir, I. J., Bancroft, G. M., and Nesbitt, H. W., (1989) Characteristics of altered labradorite surfaces by SIMS and XPS: Geochim. Cosmochim. Acta 53, 12351241.CrossRefGoogle Scholar
Muir, I. J., Bancroft, G. M., Shotyk, W., and Nesbitt, H. W., (1990) A SIMS and XPS study of dissolving plagioclase: Geochim. Cosmochim. Acta 54, 22472256.CrossRefGoogle Scholar
Muir, I. J., and Nesbitt, H. W., (1991) Effects of aqueous cations on the dissolution of labradorite feldspar: Geochim. Cosmochim. Acta 55, 31813189.CrossRefGoogle Scholar
Nesbitt, H. W., and Muir, I. J., (1988) SIMS depth profiles of weathered plagioclase and processes affecting dissolved Al and Si in some acidic soil solutions: Nature 334, 336338.CrossRefGoogle Scholar
Nesbitt, H. W., MacRae, N. D., and Shotyk, W., (1991) Congruent and incongruent dissolution of labradorite in dilute, acidic, salt solutions: J. Geol. 99, 429442.CrossRefGoogle Scholar
Pačes, T., (1973) Steady-state kinetics and equilibrium between ground water and granitic rock: Geochim. Cosmochim. Acta 37, 26412663.CrossRefGoogle Scholar
Petit, J.-C., Dran, J.-C., Paccagnella, A., and Della Mea, G., (1989) Structural dependence of crystalline silicate hydration during aqueous dissolution: Earth Planet. Sci. Lett. 93, 292298.CrossRefGoogle Scholar
Petrović, R., (1976) Rate control in feldspar dissolution. II. The protective effect of precipitates: Geochim. Cosmochim. Acta 40, 15091521.CrossRefGoogle Scholar
Petrović, R., Berner, R. A., and Goldhaber, M. B., (1976) Rate control in dissolution of alkali feldspar. I. Studies of residual feldspar grains by X-ray photoelectron spectroscopy: Geochim. Cosmochim. Acta 40, 537548.CrossRefGoogle Scholar
Schott, T., and Petit, J.-C., (1987) New evidence for the mechanisms of dissolution of silica minerals: in Aquatic Surface Chemistry, Stumm, W., ed., John Wiley & Sons, New York, 293315.Google Scholar
Tamm, O., (1930) Experimentelle Studien über die Verwitterung und Tonbildung von Feldspaten: Chem. Erde 4, 420430.Google Scholar
Tazaki, K., (1986) Observation of primitive clay precursors during microcline weathering: Contrib. Mineral. Petrol. 92, 8688.CrossRefGoogle Scholar
Tazaki, K., and Fyfe, W. S., (1987a) Formation of primitive clay precursors on K-feldspar under extreme leaching conditions: in Proc. Inter. Clay Conf., Denver, 1985, Schultz, L. G., Olphen, H. van, and Mumpton, F. A., eds., The Clay Mineralogical Society, Bloomington, Indiana, 5358.Google Scholar
Tazaki, K., and Fyfe, W. S., (1987b) Primitive clay precursors formed on feldspar: Canadian J. Earth Sciences 24, 506527.CrossRefGoogle Scholar
van Olphen, H., (1971) Amorphous clay materials: Science 171, 9091.CrossRefGoogle Scholar
Wollast, R., (1967) Kinetics of the alteration of K-feldspar in buffered solution at low temperature: Geochim. Cosmochim. Acta 31, 635648.CrossRefGoogle Scholar