Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-22T18:37:47.719Z Has data issue: false hasContentIssue false

Growth Conditions and Genesis of Spherical and Platy Kaolinite

Published online by Cambridge University Press:  02 April 2024

Shinji Tomura
Affiliation:
Government Industrial Research Institute, Nagoya, 1 Hirate-cho, Kita-ku, Nagoya 462, Japan
Yasuo Shibasaki
Affiliation:
Government Industrial Research Institute, Nagoya, 1 Hirate-cho, Kita-ku, Nagoya 462, Japan
Hiroyuki Mizuta
Affiliation:
Government Industrial Research Institute, Nagoya, 1 Hirate-cho, Kita-ku, Nagoya 462, Japan
Masao Kitamura
Affiliation:
Department of Geology and Mineralogy, Faculty of Science, Kyoto University, Sakyo-ku, Kyoto 606, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Spherical and platy kaolinite crystals were prepared under several hydrothermal conditions. Spherical kaolinite was produced mainly at high solid/water ratio (1/4) and at low temperatures (150°-200°C). Platy kaolinite predominated in products from experiments with intermediate solid/water ratios (1/256-1/16) and at high temperatures. Boehmite predominated at low solid/water ratios (1/4096) at all experimental temperatures (180°-220°C). The results indicate that the growth of the spherical kaolinite was favored at high degrees of supersaturation, whereas the growth of the platy kaolinite was favored at relatively low degrees of supersaturation.

Type
Research Article
Copyright
Copyright © 1985, The Clay Minerals Society

References

Busenberg, E., 1978 The products of the interaction of feldspars with aqueous solutions at 25°C Geochim. Cosmochim. Acta 42 16791686.CrossRefGoogle Scholar
De Kimpe, C. R. and Fripiat, J. J., 1968 Kaolinite crystallization from H-exchanged zeolites Amer. Mineral 53 216230.Google Scholar
De Kimpe, C. R. and Gastuche, M. C., 1964 Low-temperature syntheses of kaolin minerals Amer. Mineral 49 116.Google Scholar
De Kimpe, C. R., Gastuche, M. C. and Brindley, G. W., 1961 Ionic coordination in alumino-silicic gels in relation to clay mineral formation Amer. Mineral 46 13701381.Google Scholar
De Kimpe, C. R., Kodama, H. and Rivard, R., 1981 Hydrothermal formation of a kaolinite-like product from noncrystalline aluminosilicate gels Clays & Clay Minerals 29 446450.CrossRefGoogle Scholar
De Vijnck, Y. A., 1973 Étude des phases cristallines appartenant au système par Al2O3-SiO2-H2O formées par traitement hydrothermal de gels obtenus par coprecipitation d’Al(OH)3 et de Si(OH)4 Silic. Ind 38 193211.Google Scholar
Dixon, J. B. and McKee, T. R., 1974 Internal and external morphology of tubular and spheroidal halloysite particles Clays & Clay Minerals 22 127137.CrossRefGoogle Scholar
Eberl, D. D. and Hower, J., 1975 Kaolinite synthesis: the role of the Si/Al and (alkali)/(H+) ratio in hydrothermal systems Clays & Clay Minerals 23 301309.CrossRefGoogle Scholar
Helgeson, H. C., 1968 Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous solutions—I. Thermodynamic reactions Geochim. Cosmochim. Acta 32 853877.CrossRefGoogle Scholar
Helgeson, H. C., 1971 Kinetics of mass transfer among silicates and aqueous solutions Geochim. Cosmochim. Acta 35 421469.CrossRefGoogle Scholar
Helgeson, H. C., Garreis, R. M. and Mackenzie, T., 1969 Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous solutions—II. Applications Geochim. Cosmochim. Acta 33 455481.CrossRefGoogle Scholar
Hem, J. D. and Lind, C. J., 1974 Kaolinite synthesis at 25°C Science 184 11711173.CrossRefGoogle Scholar
Huang, W. H. and Keller, W. D., 1973 New stability diagrams of some phyllosilicate in the SiO2-Al2O3-K2O-H2O system Clays & Clay Minerals 21 331336.CrossRefGoogle Scholar
Keller, W. D., Hanson, R. F., Huang, W. H. and Cervantes, A., 1971 Sequential active alteration of rhyolitic volcanic rock to endellite and a precursor phase of it at a spring in Michoacan, Mexico Clays & Clay Minerals 19 121127.CrossRefGoogle Scholar
Kirkman, J. H., 1981 Morphology and structure of halloysite in New Zealand tephras Clays & Clay Minerals 29 19.CrossRefGoogle Scholar
Kittrick, J. A., 1970 Precipitation of kaolinite at 25°C and 1 atm Clays & Clay Minerals 18 261267.CrossRefGoogle Scholar
La Iglesia, A. and Galan, E., 1975 Halloysite-kaolinite transformation at room temperature Clays & Clay Minerals 23 109113.CrossRefGoogle Scholar
La Iglesia, A., Martin Vivaldi, J. L. and Serratosa, J. M., 1973 A contribution to the synthesis of kaolinite Proc. Int. Clay Conf., Madrid, 1972 173185.Google Scholar
La Iglesia, A., Martin Vivaldi, J. C. and Lopez, Agay, 1976 Kaolinite crystallization at room temperature by homogeneous precipitation—III: hydrolysis of feldspars Clays & Clay Minerals 24 3642.CrossRefGoogle Scholar
La Iglesia, A. and Van Oosterwyck-Gastuche, M. C., 1978 Kaolinite synthesis I. Crystallization conditions for low temperature synthesis with an attempt to calculate the thermodynamical equilibria. Application to laboratory work and field observation Clays & Clay Minerals 26 397408.CrossRefGoogle Scholar
Lasaga, A. C., 1981 Rate lows of chemical reactions Kinetics of Geochemical Processes, Reviews in Mineralogy Vol. 8 168.CrossRefGoogle Scholar
Linares, J. and Huertas, F., 1971 Kaolinite: synthesis at room temperature Science 171 896897.CrossRefGoogle ScholarPubMed
Lind, C. J. and Hem, J. D., 1975 Effects of organic solutes on chemical reactions of aluminum U.S. Geol. Surv. Water Supply Pap 1827G 183.Google Scholar
Nagasawa, K., Sudo, T. and Shimoda, S., 1978 Weathering of volcanic ash and other pyroclastic materials Clays and Clay Minerals of Japan 105145.CrossRefGoogle Scholar
Oberlin, A. and Couty, R., 1970 Conditions of kaolinite formation during alteration of some silicates by water at 200°C Clays & Clay Minerals 18 347356.CrossRefGoogle Scholar
Polzer, W. L., Hem, J. D. and Gabe, H. J., 1967 Formation of crystalline hydrous aluminosilicates in aqueous solutions at room temperature U.S. Geol. Surv. Prof. Paper 575B 128132.Google Scholar
Poncelet, G. and Brindley, G. W., 1967 Experimental formation of kaolinite from montmorillonite at low temperatures Amer. Mineral 52 11611173.Google Scholar
Rodrique, L., Poncelet, F., Herbillon, S. and Serratosa, J. M., 1972 Importance of silica subtraction process during the hydro-thermal kaolinitization of amorphous silica-aluminas Proc. Int. Clay Conf., Madrid, 1972 187198.Google Scholar
Sudo, T. and Yotsumoto, H., 1977 The formation of halloysite tubes from spherulitic halloysite Clays & Clay Minerals 25 155159.CrossRefGoogle Scholar
Tomura, S., Shibasaki, Y., Mizuta, H. and Kitamura, M., 1983 Spherical kaolinite: synthesis and mineralogical properties Clays & Clay Minerals 31 413421.CrossRefGoogle Scholar
Trichet, J., 1969 Study of the structure of volcanic glass and its relation to the alteration of vitreous rocks Proc. Int. Clay Conf, Tokyo, 1969 1 443453.Google Scholar
Tsuzuki, Y., 1976 Solubility diagrams for explaining zone sequences in bauxite, kaolin and pyrophyllite-diaspore deposits Clays & Clay Minerals 24 297302.CrossRefGoogle Scholar
Tsuzuki, Y. and Kawabe, I., 1983 Polymorphic transformations of kaolin minerals in aqueous solutions Geochim. Cosmochim. Acta 47 5966.CrossRefGoogle Scholar
Tsuzuki, Y. and Mizutani, S., 1971 A study of rock alteration process based on kinetics of hydrothermal experiment Contrib. Mineral. Petrol 30 1533.CrossRefGoogle Scholar
Tsuzuki, Y., Mizutani, S., Shimizu, H. and Hayashi, H., 1974 Kinetics of alteration of K-feldspar and its application to the alteration zoning Geochem. J 8 120.CrossRefGoogle Scholar
Tsuzuki, Y. and Suzuki, K., 1980 Experimental study of the alteration process of labradorite in acid hydrothermal solutions Geochim. Cosmochim. Acta 44 673683.CrossRefGoogle Scholar
Urabe, K., Ossaka, J. and Yamada, H., 1970 Experimental formation of kaolinite from vermiculite Clay Sci 4 3744.Google Scholar
Van Oosterwyck-Gastuche, M. C. and La Iglesia, A., 1978 Kaolinite synthesis. II. A review and discussion of the factors influencing the rate process Clays & Clay Minerals 26 409417.CrossRefGoogle Scholar
Walter, J. V. and Helgeson, H. C., 1977 Calculation of the thermodynamic properties of aqueous silica and the solubility of quartz and its polymorphs at high pressures and temperatures A mer. J. Science 277 13151351.CrossRefGoogle Scholar