Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-22T13:43:56.178Z Has data issue: false hasContentIssue false

Geochemistry of Mixed-Layer Illite-Smectites from an Extensional Basin, Antalya Unit, Southwestern Turkey

Published online by Cambridge University Press:  01 January 2024

Ömer Bozkaya*
Affiliation:
Department of Geological Engineering, Cumhuriyet University, TR-58140 Sivas, Turkey
Hüseyin Yalçin
Affiliation:
Department of Geological Engineering, Cumhuriyet University, TR-58140 Sivas, Turkey
*
* E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Antalya Unit, one of the allochthonous units of the Tauride belt, is of critical, regional tectonic importance because of the presence of rifting remnants related to the break-up of the northern margin of Gondwana during Triassic time. Paleozoic — Mesozoic sedimentary rocks of the Antalya Unit consist mainly of calcite, dolomite, quartz, feldspar, and phyllosilicate (illite-smectite, smectite, kaolinite, chlorite, illite, chlorite-smectite, and chlorite-vermiculite) minerals. Illite-smectite (I-S) was found in all of the sequences from Cambrian to Cretaceous, but smectite was only identified in Late Triassic-Cretaceous sediments. R0 I-S occurs exclusively in early-diagenetic Triassic—Cretaceous units of the Alakırçay Nappe (rift sediments), whereas R3 I-S is present in late-diagenetic to low-anchimetamorphic Cambrian—Early Triassic units of the Tahtalıdağ Nappe (pre-rift sediments). Kübler Index (KI) values and the illite content of I-S reflect increasing diagenetic grades along with increasing depth. Major-element, trace-element, rare-earth-element (REE), and stable-isotope (O and H) compositions were investigated in dioctahedral and trioctahedral smectites and I-S samples from the pre-rift and rift-related formations. Both total layer charge and interlayer K increase, whereas tetrahedral Si and interlayer Ca decrease from smectite to R3 I-S. Trace-element and REE concentrations of the I-S are greater in pre-rift sediments than in rift sediments, except for P, Eu, Ni, Cu, Zn, and Bi. On the basis of North American Shale Composite (NASC)-normalized values, the REE patterns of I-S in the pre-rift and rift sediments are clearly separate and distinct. Oxygen (δ18O) and hydrogen (δD) values relative to SMOW (Standard Mean Oceanic Water) of smectite and I-S reflect supergene conditions, with decreasing δ18O but increasing δD values with increasing diagenetic grade. Lower dD values for these I-S samples are characteristic of rift sediments, and pre-rift sediments have greater values. On the basis of isotopic data from these I-S samples, the diagenesis of the Antalya Unit possibly occurred under a high geothermal gradient (>35ºC/km), perhaps originating under typical extensional-basin conditions with high heat flow. The geochemical findings from I-S and smectites were controlled by diagenetic grade and can be used as an additional tool for understanding the basin maturity along with mineralogical data.

Type
Article
Copyright
Copyright © Clay Minerals Society 2010

References

Abid, I.A., Hesse, R. and Harper, J.D., 2004 Variations in mixed-layer illite/smectite diagenesis in the rift and post-rift sediments of the Jeanne d’Arc Basin, Grand Banks offshore Newfoundland, Canada Canadian Journal of Earth Sciences 41 401429 10.1139/e04-004.CrossRefGoogle Scholar
Awwiller, D.N., 1994 Geochronology and mass transfer in Gulf Coastmudrocks (south-central Texas, U.S.A.): Rb-Sr, Sm-Nd and REE systematics Chemical Geology 116 6184 10.1016/0009-2541(94)90158-9.CrossRefGoogle Scholar
Awwiller, D.N. and Mack, L.F., 1991 Diagenetic modifications of Sm-Nd model ages in Tertiary sandstones and shales, Texas Gulf Coast Geology 19 311314 10.1130/0091-7613(1991)019<0311:DMOSNM>2.3.CO;2.2.3.CO;2>CrossRefGoogle Scholar
Bechtel, A., Savin, S.M. and Hoernes, S., 1999 Oxygen and hydrogen isotopic of clay minerals of the Bahloul Formation in the region of the Bou Grine zinc-lead ore deposit (Tunisia): evidence for fluid-rock interaction in the vicinity of saltdome cap rock Chemical Geology 156 191207 10.1016/S0009-2541(98)00185-5.CrossRefGoogle Scholar
Bozkaya, Ö. and Yalçın, H., 2004 Diagenetic to low-grade metamorphic evolution of clay mineral assemblages in Palaeozoic to early Mesozoic rocks of the Eastern Taurides, Turkey Clay Minerals 39 481500 10.1180/0009855043940149.CrossRefGoogle Scholar
Bozkaya, Ö. and Yalçın, H., 2004 New mineralogical data and implications for the tectono-metamorphic evolution of the Alanya Nappes, Central Tauride Belt, Turkey International Geology Review 46 347365 10.2747/0020-6814.46.4.347.CrossRefGoogle Scholar
Bozkaya, Ö. and Yalçın, H., 2005 Diagenesis and very low-grade metamorphism of the Antalya Unit: mineralogical evidence of Triassic rifting, Alanya-Gazipaşa, Central Taurus Belt, Turkey Journal of Asian Earth Sciences 25 109119 10.1016/j.jseaes.2004.02.001.CrossRefGoogle Scholar
Bozkaya, Ö. and Yalçın, H. (2007) Investigation of diagenetic/metamorphic grade of the Antalya Unit (Tahtalıdağ and Alakırçay nappes). The Scientific and Technological Research Council of Turkey (TUBITAK), ProjectNo: 104Y329, 130 pp.Google Scholar
Bozkaya, Ö. Yalçın, H. and Göncüoğlu, M.C., 2002 Mineralogic and organic responses to the stratigraphic irregularities: an example from the Lower Paleozoic very low-grade metamorphic units of the Eastern Taurus Autochthon, Turkey Schweizerische Mineralogische und Petrographische Mitteilungen 82 355373.Google Scholar
Bozkaya, Ö. Gürsu, S. and Göncüoğlu, M.C., 2006 Textural and mineralogical evidence for a Cadomian tectonothermal event in the eastern Mediterranean (Sandıklı-Afyon area, western Taurides, Turkey) Gondwana Research 10 301315 10.1016/j.gr.2006.04.009.CrossRefGoogle Scholar
Brindley, G.W., Brindley, G.W., and Brown, G., 1980 Quantitative X-ray mineral analysis of clays Crystal Structures of Clay Minerals and their X-ray Identification London Mineralogical Society 411438.CrossRefGoogle Scholar
Brunn, J.H., Dumont, J.F., De Graciansky, P.C., Gutnic, M., Juteau, T., Marcoux, J., Monod, O., Poisson, A. and Campbell, A.S., 1971 Outline of the geology of the western Taurides Geology and History of Turkey Tripoli Petroleum Exploration Society of Libya 225255.Google Scholar
Capuano, R.M., 1992 The temperature dependence of H-isotope fractionation between clay minerals and water: Evidence from a geopressured system Geochimica et Cosmochimica Acta 56 25472554 10.1016/0016-7037(92)90208-Z.CrossRefGoogle Scholar
Clayton, R.N. and Mayeda, T.K., 1963 The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis Geochimica et Cosmochimica Acta 27 4352 10.1016/0016-7037(63)90071-1.CrossRefGoogle Scholar
Condie, K.C., 1991 Another look at rare earth elements in shales Geochimica et Cosmochimica Acta 55 25272537 10.1016/0016-7037(91)90370-K.CrossRefGoogle Scholar
Craig, H., 1961 Isotopic variations in meteoric waters Science 133 17021703 10.1126/science.133.3465.1702.CrossRefGoogle ScholarPubMed
Dumont, J.F., Gutnic, M., Marcoux, J., Monod, O. and Poisson, A., 1972 Le Trias des Taurides occidantales (Turquie). Définition du bassin pamphylien: Un nouveau domaine a` la marge externe de la chaine taurique Zeitschrift der Deutsche Geologischen Gesellschaft 123 385409.CrossRefGoogle Scholar
Elliott, W.C., 1993 Origin of the Mg-smectite at the Cretaceous/Tertiary (K/T) boundary at Stevns Klint, Denmark Clays and Clay Minerals 41 442452 10.1346/CCMN.1993.0410405.CrossRefGoogle Scholar
Fleet, A.J. and Henderson, P., 1984 Aqueous and sedimentary geochemistry of the rare earth elements Rare Earth Elements Amsterdam Elsevier 343373.Google Scholar
Frey, M. and Frey, M., 1987 Very low-grade metamorphism of clastic sedimentary rocks Low-Temperature Metamorphism Glasgow, UK Blackie and Son 958.Google Scholar
Folk, R.L., 1968 Petrology of Sedimentary Rocks USA University of Texas Publications, Austin, Texas.Google Scholar
Gat, J.R., Shemesh, A., Tziperman, E., Hecht, A., Georgopoulus, D. and Basturk, O., 1996 The stable isotope composition of waters of the eastern Mediterranean Sea Journal of Geophysical Research 101 64416451 10.1029/95JC02829.CrossRefGoogle Scholar
Göncüoğlu, M.C. and Kozlu, H., 2000 Early Paleozoic evolution of the NW Gondwanaland: data from southern Turkey and surrounding regions Gondwana Research 3 315324 10.1016/S1342-937X(05)70290-2.CrossRefGoogle Scholar
Göncüoğlu, Y. and Kozur, H.W., 1999 Upper Cambrian and Lower Ordovician conodonts from the Antalya unit in the Alanya Tectonic Window, southern Turkey Neues Jahrbuch für Geologie Palaontologie Monatshefte 10 593604.CrossRefGoogle Scholar
Göncüoğlu, M.C., Dirik, K. and Kozlu, H., 1997 General characteristics of pre-Alpine and Alpine Terranes in Turkey: Explanatory notes to the terrane map of Turkey. Annales Geologique de Pays Hellenique, 37 Geological Society of Greece 515536.Google Scholar
Grathoff, G.H. and Moore, D.M., 2002 Characterization of the Waukesha Illite: a mixed-polytype illite in the Clay Minerals Society repository American Mineralogist 87 15571563 10.2138/am-2002-11-1205.CrossRefGoogle Scholar
Gromet, L.P., Dymek, R.F., Haskin, L.A. and Korotev, R.L., 1984 The North American shale composite: Its compilation, major and trace element characteristics Geochimica et Cosmochimica Acta 48 24692482 10.1016/0016-7037(84)90298-9.CrossRefGoogle Scholar
Guggenheim, S., Bain, D.C., Bergaya, F., Brigatti, M.F., Drits, V.A., Eberl, D.D., Formoso, M.L.L., Galán, E., Merriman, R.J., Peacor, D.R., Stanjek, H. and Watanabe, T., 2002 Report of the AIPEA nomenclature committee for 2001: order, disorder and crystallinity in phyllosilicates and the use of the “Crystallinity Index” Clay Minerals 37 389393 10.1180/0009855023720043.CrossRefGoogle Scholar
Güven, N. and Bailey, S.W., 1988 Smectites Hydrous Phyllosilicates Washington D.C. Mineralogical Society of America 497560 10.1515/9781501508998-018.CrossRefGoogle Scholar
Haskin, L.A., Haskin, M.A., Frey, F.A., and Wideman, T.R., 1968 Relative and absolute terrestrial abundances of the rare earths Origin and Distribution of the Elements Oxford, UK Pergamon Press 880912.Google Scholar
Honty, M., Clauer, N. and Sucha, V., 2008 Rare-earth elemental systematics of mixed-layered illite-smectite from sedimentary and hydrothermal environments of the Western Carpathians (Slovakia) Chemical Geology 249 167190 10.1016/j.chemgeo.2007.12.009.CrossRefGoogle Scholar
Hower, J., Eslinger, E.V., Hower, M.E. and Perry, E.A., 1976 Mechanism of burial metamorphism of argillaceous sediment: 1. Mineralogical and chemical evidence Geological Society of America Bulletin 87 725737 10.1130/0016-7606(1976)87<725:MOBMOA>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Kalafatçıoglu, A., 1973 Antalya körfezi batı kesiminin jeolojisi Bulletin of the Mineral Research and Exploration of Turkey 81 82131.Google Scholar
Kisch, H.J., 1980 Illite crystallinity and coal rank associated with lowest-grade metamorphism of the Taveyanne grey-wacke in the Helvetic zone of the Swiss Alps Eclogae Geologicae Helvetiae 73 753777.Google Scholar
Kisch, H.J., 1991 Illite crystallinity: recommendations on sample preparation, X-ray diffraction settings, and inter-laboratory samples Journal of Metamorphic Geology 9 665670 10.1111/j.1525-1314.1991.tb00556.x.CrossRefGoogle Scholar
Kisch, H.J., 1991 Developmentof slaty cleavage and degree of very-low-grade metamorphism: a review Journal of Metamorphic Geology 9 735750 10.1111/j.1525-1314.1991.tb00562.x.CrossRefGoogle Scholar
Krumm, S., 1996 WINFIT 1.2: version of November 1996 (The Erlangen geological and mineralogical software collection) of “WINFIT 1.0: a public domain program for interactive profile-analysis under WINDOWS” 38 253261.Google Scholar
Kübler, B., 1968 Evaluation quantitative du métamorphisme par la cristallinité de l’illite Bulletin-Centre de Recherches Pau-SNPA 2 385397.Google Scholar
Longstaffe, F.J. and Ayalon, A., 1990 Hydrogen-isotope geochemistry of diagenetic clay minerals from Cretaceous sandstones, Alberta: evidence for exchange Applied Geochemistry 5 657688 10.1016/0883-2927(90)90063-B.CrossRefGoogle Scholar
Maury, R.C., Lapierre, H., Lapierre, H., Bosch, D., Marcoux, J., Krystyn, L., Cotton, J., Bussy, F., Brunet, P. and Senebier, F., 2008 The alkaline intraplate volcanism of the Antalya nappes (Turkey): a Late Triassic remnant of the Neotethys Bulletin de la Société Geologique de France 179 397410 10.2113/gssgfbull.179.4.397.CrossRefGoogle Scholar
McLennan, S.M., Lipin, B.R., and McKay, G.A., 1989 Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes Geochemistry and Mineralogy of Rare Earth Elements Washington, D.C. Mineralogical Society of America 169200 10.1515/9781501509032-010.CrossRefGoogle Scholar
Merriman, R.J., 2005 Clay minerals and sedimentary basin history European Journal of Mineralogy 17 720 10.1127/0935-1221/2005/0017-0007.CrossRefGoogle Scholar
Merriman, R.J., Frey, M., Robinson, D., and Frey, M., 1999 Patterns of very low-grade metamorphism in metapelitic rocks Low Grade Metamorphism Oxford, UK Blackwell Science 61107.Google Scholar
Merriman, R.J., Peacor, D.R., Robinson, D., and Frey, M., 1999 Very low grade metapelites: Mineralogy, microfabrics and measuring reaction progress Low-Grade Metamorphism Oxford, UK Blackwell Science 1060.Google Scholar
Milodowski, A.E., Zalasiewicz, J.A., Morton, A.C., Todd, S.P. and Haughton, P.D.W., 1991 Redistribution of rare earth elements during diagenesis of turbidite/ hemipelagite mudrock sequences of Llandovery age from Central Wales Developments in Sedimentary Provenance Studies 101124.CrossRefGoogle Scholar
Moore, D.M. and Reynolds, R.C., 1997 X-ray Diffraction and the Identification and Analysis of Clay Minerals New York Oxford University Press.Google Scholar
O’Brien, N.R. and Slatt, R.M., 1990 Argillaceous Rock Atlas New York Springer-Verlag 10.1007/978-1-4612-3422-7.CrossRefGoogle Scholar
Ohr, M., Halliday, A.N. and Peacor, D.R., 1994 Mobility and fractionation of rare earth elements in argillaceous sediments: implications for dating diagenesis and low-grade metamorphism Geochimica et Cosmochimica Acta 58 289312 10.1016/0016-7037(94)90465-0.CrossRefGoogle Scholar
Ozgül, N., 1976 Some geological aspects of the Taurus orogenic belt(Turkey) Bulletin of the Geological Society of Turkey 19 6578.Google Scholar
Ozgül, N., 1984 Alanya Tectonic Window and geology of its western part. Ketin Symposium, 20–21 February 1984, Ankara Geological Society of Turkey 97120.Google Scholar
Reynolds, R.C. Jr. (1985) NEWMOD A Computer Program for the calculation of one-dimensional diffraction patterns of mixed-layered clays. and Reynolds, R.C. Jr., 8 Brook Rd., Hanover, New Hampshire, USA.Google Scholar
Robertson, A.H.F., 1994 Role of the tectonic facies concept in orogenic analysis and its application to Tethys in the Eastern Mediterranean region Earth Science Reviews 37 139213 10.1016/0012-8252(94)90028-0.CrossRefGoogle Scholar
Robertson, A.H.F., Bozkurt, E., and Winchester, J.A., 2000 Mesozoic-Tertiary tectonic-sedimentary evolution of a south Tethyan oceanic basin and its margins in southern Turkey Tectonics and Magmatism in Turkey and the Surrounding Area London Geological Society 97138.Google Scholar
Robertson, A.H.F. and Woodcock, N.H., 1981 Gödene Zone, Antalya Complex: volcanism and sedimentation along a Mesozoic continental margin, S.W. Turkey Geologische Rundschau 70 11771214 10.1007/BF01820188.CrossRefGoogle Scholar
Robinson, D., 1987 Transition from diagenesis to metamorphism in extensional and collision settings Geology 15 866869 10.1130/0091-7613(1987)15<866:TFDTMI>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Robinson, D. and Bevins, R.E., 1986 Incipientmetamorphism in the Lower Palaeozoic marginal basin of Wales Journal of Metamorphic Geology 4 101113 10.1111/j.1525-1314.1986.tb00340.x.CrossRefGoogle Scholar
Savin, S.M. and Epstein, S., 1970 The oxygen and hydrogen isotope geochemistry of clay minerals Geochimica et Cosmochimica Acta 34 2542 10.1016/0016-7037(70)90149-3.CrossRefGoogle Scholar
Savin, S.M., Lee, M. and Bailey, S.W., 1988 Isotopic studies of phyllo-silicates Hydrous Phyllosilicates Washington, D.C. Mineralogical Society of America 189223 10.1515/9781501508998-012.CrossRefGoogle Scholar
Senel, M., 1997 1:100,000 Scale Geological Maps of Turkey, Antalya M10, M11, L10, L11 and L12 quadrangles Ankara, Turkey General Directorate of Mineral Research and Exploration.Google Scholar
Senel, M., Dalkılıç, H., Gedik, I., Serdaroglu, M., Metin, S., Esentürk, K., Bölükbası, A.S. and Özgül, N., 1998 Orta Toroslar’da Güzelsu koridoru ve kuzeyinin stratigrafisi, Türkiye Bulletin of Mineral Research and Exploration of Turkey 120 171198.Google Scholar
Sengör, A.M.C. and Yılmaz, Y., 1981 Tethyan evolution of Turkey: a plate tectonic approach Tectonophysics 75 181241 10.1016/0040-1951(81)90275-4.CrossRefGoogle Scholar
Sheppard, S.M.F. and Gilg, H.A., 1996 Stable isotope geochemistry of clay minerals Clay Minerals 31 124 10.1180/claymin.1996.031.1.01.CrossRefGoogle Scholar
Sheppard, S.M.F., Nielsen, R.L. and Taylor, H.P. Jr., 1969 Oxygen and hydrogen isotope ratios of clay minerals from porphyry copper deposits Economic Geology 64 755777 10.2113/gsecongeo.64.7.755.CrossRefGoogle Scholar
Sudo, T., Shimoda, S., Yotsumoto, H. and Aita, S., 1981 Electron Micrographs of Clay Minerals Amsterdam Elsevier.Google Scholar
Sun, S.S., McDonough, W.E., Saunders, A.D., and Norry, M.J., 1989 Chemical and isotopic systematics of ocean basalts: Implications for mantle composition and processes Magmatism in Ocean Basalts London Geological Society 313345.Google Scholar
Taylor, S.R. and McLennan, S.M., 1985 The Continental Crust: Its Composition and Evolution Oxford, UK Blackwell.Google Scholar
Tekin, U.K., 2002 Lower Jurassic (Hettangian-Sinemurian) radiolarians from the Antalya Nappes, Central Taurids, Southern Turkey Micropaleontology 40 177205 10.2113/48.2.177.CrossRefGoogle Scholar
Tekin, U.K. and Yurtsever, T.S., 2003 Late Triassic (Early to Middle Norian) radiolarians from the Antalya Nappes, Antalya, SW Turkey Journal of Micropaleontology 22 147162 10.1144/jm.22.2.147.CrossRefGoogle Scholar
Ulu, U., 1983 Geological investigation in the Sugözü-Gazipasa, Antalya Bulletin of Geological Engineering of Turkey 16 38.Google Scholar
Uysal, I.T. and Golding, S.D., 2003 Rare earth element fractionation in authigenic illite-smectite from Late Permian clastic rocks, Bowen Basin, Australia: implications for physico-chemical environments of fluids during illitization Chemical Geology 193 167179 10.1016/S0009-2541(02)00324-8.CrossRefGoogle Scholar
Varol, E., Tekin, U.K. and Temel, A., 2007 Age and geochemistry of Middle to Late Carnian basalts from the Alakırçay Nappe (Antalya Nappes, SW Turkey): implications for the evolution of the southern branch of Neotethys Ofioliti 32 163176.Google Scholar
Velde, B., Suzuki, T. and Nicot, E., 1986 Pressure-temperature-composition of illite/smectite mixed-layer minerals: Niger delta mudstones and other examples Clays and Clay Minerals 34 435441 10.1346/CCMN.1986.0340410.CrossRefGoogle Scholar
Weaver, C.E. and Pollard, L.D., 1973 The Chemistry of C1ay Minerals Amsterdam Elsevier.Google Scholar
Welton, E.J., 1984 SEM Petrology Atlas Tulsa, Oklahoma American Association of Petroleum Geologists.CrossRefGoogle Scholar
Warr, L.N. and Rice, A.H.N., 1994 Interlaboratory standardization and calibration of clay mineral crystallinity and crystallite size data Journal of Metamorphic Geology 12 141152 10.1111/j.1525-1314.1994.tb00010.x.CrossRefGoogle Scholar
Yılmaz, P.O., Dixon, J.E., and Robertson, A.H.F., 1984 Fossil and K-Ar data for the age of the Antalya complex, SW Turkey The Geological Evolution of the Eastern Mediterranean London Geological Society 335347.Google Scholar
Zielinski, R.A., 1982 The mobility of uranium and other elements during alteration of rhyolite ash to montmorillonite: a case study in the Troublesome Formation, Colorado, U.S.A Chemical Geology 35 185204 10.1016/0009-2541(82)90001-8.CrossRefGoogle Scholar