Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T10:44:21.817Z Has data issue: false hasContentIssue false

Geochemical records of a bentonitic acid-tuff succession related to a transgressive systems tract — Indication of changes in the volcanic sedimentation rate

Published online by Cambridge University Press:  01 January 2024

Z. Püspöki*
Affiliation:
Department of Mineralogy and Geology, University of Debrecen, Egyetem tér 1., Debrecen, H-4032, Hungary
M. Kozák
Affiliation:
Department of Mineralogy and Geology, University of Debrecen, Egyetem tér 1., Debrecen, H-4032, Hungary
P. Kovács-Pálffy
Affiliation:
Geological Institute of Hungary, Stefánia út 14., Budapest, H-1142, Hungary
J. Szepesi
Affiliation:
Department of Mineralogy and Geology, University of Debrecen, Egyetem tér 1., Debrecen, H-4032, Hungary
R. McIntosh
Affiliation:
Department of Mineralogy and Geology, University of Debrecen, Egyetem tér 1., Debrecen, H-4032, Hungary
P. Kónya
Affiliation:
Geological Institute of Hungary, Stefánia út 14., Budapest, H-1142, Hungary
L. Vincze
Affiliation:
Department of Mineralogy and Geology, University of Debrecen, Egyetem tér 1., Debrecen, H-4032, Hungary
G. Gyula
Affiliation:
Department of Mineralogy and Geology, University of Debrecen, Egyetem tér 1., Debrecen, H-4032, Hungary
*
* E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A detailed stratigraphic and facies reconstruction of a bentonitized acid-tuff succession, deposited within the transgressive systems tract of the Upper Miocene-Sarmatian Ser-3 eustatic cycle, at Sajóbábony, northern Hungary, was performed via petrographic, mineralogical and geochemical analyses. The purpose of the work was to analyze the degree of alteration of the volcanogenic sediments, as an indicator of the relative volcanic sedimentation rate. This may have an important role in indicating volcanic periods synchronous with sedimentation or reconstructing the volcanosedimentary paleoconditions. Sample pairs were collected from each bentonite and tuff layer, and, to facilitiate microstratigraphic relations, samples were collected every 10 cm within bentonite layers. Mineralogical analyses were performed by X-ray diffraction and geochemical analyses by inductively coupled plasma-mass spectroscopy.

The CaO/K2O and Eu/La ratios correlate with each other and with a montmorillonite/X-ray-amorphous phase ratio, reflecting Ca and Eu incorporation associated with devitrification and smectite formation. In accordance with the current literature, these mineralogical and geochemical proxies can be related primarily to the weathering processes. Considering vertical distributions in a sequence-stratigraphic context, the Ca content and Eu/La values show that local peaks and Eu anomalies characteristic of acid tuffs show minima at flooding surfaces (FS). Within a bentonite layer, representing a single transgressive period, the repeated events of dust-tuff accumulations have been determined by K2O/CaO and La/Eu peaks, confirmed also by the Eu anomalies in the rare earth element (REE) patterns, thus leading to the conclusion that the level of alteration is closely correlated with the elimination of terrigenous input and a minimum in volcanic sedimentation rate allowing more intensive alteration of the deposited volcanic material. In the case of fine tuff beds, Eu anomalies on REE patterns reflect limited alteration at the bottom and more intensive alteration in the upper parts of the beds, reflecting the effect of infiltration of sea water into the pores.

Type
Research Article
Copyright
Copyright © 2008, The Clay Minerals Society

References

Allen, S.R. and McPhie, J., 2003 Phenocryst fragments in rhyolitic lavas and lava domes Journal of Volcanology and Geothermal Research 126 263283 10.1016/S0377-0273(03)00151-3.CrossRefGoogle Scholar
Bartha, A. and Bertalan, , 1997 Determination of the rare earth elements of rock samples by ICP-MS using different sample decomposition methods Acta Mineralogica-Petrographica, Szeged 38 131149.Google Scholar
Bartha, A. Ballók, I. and Geoff, T., 2004 Simultaneous determination of mercury, hybridizing elements and those detectable by conventional pulverizing techniques by CMA-ICP-AES method Annual Report of the Geological Institute of Hungary for 2002 5568.Google Scholar
Bea, F., 1996 Residence of REE, Y, Th and U in granites and crustal protoliths; implications for the chemistry of crustal melt Journal of Petrology 37 521552 10.1093/petrology/37.3.521.CrossRefGoogle Scholar
Bergström, S.M. Huff, W.D. and Kolata, D.R., 1998 The lower Silurian Osmundsberg K-bentonite. Part I: stratigraphic position, distribution, and paleogeographic significance Geological Magazine 135 113 10.1017/S0016756897007887.CrossRefGoogle Scholar
Bertalan, Bartha, A. Ballók, I. and Varga-Barna, Z.s., 2003 The influence of experimental leaching conditions for the determinations of the soluble element content of soil and stream sediment samples International Journal of Environmental Analytical Chemistry 82 771784 10.1080/0306731031000083997.CrossRefGoogle Scholar
Cant, D.J. (1992) Subsurface facies analysis. Pp. 2746 in: Facies Models (Walker, R.G. and James, N.P., editors). Geological Assocation of Canada.Google Scholar
Cullers, R.L. Chaudhuri, S. Arnold, B. Lee, M. and Wolf, C.W., 1975 Rare earth distributions in clay minerals and in the clay-sized fraction of the Lower Permian Havensville and Eskridge shales of Kansas and Oklahoma Geochimica et Cosmochimica Acta 39 16911703 10.1016/0016-7037(75)90090-3.CrossRefGoogle Scholar
Curti, E. Kulik, D.A. and Tits, J., 2005 Solid solutions of trace Eu(III) in calcite: thermodynamic evaluation of experimental data in a wide range of pH and pCO2 Geochimica et Cosmochimica Acta 69 17211737 10.1016/j.gca.2004.06.027.CrossRefGoogle Scholar
Fisher, R.V. and Schmincke, H.U., 1984 Pyroclastic Rocks Berlin Springer-Verlag 10.1007/978-3-642-74864-6 472 pp.CrossRefGoogle Scholar
Gilbert, J.S. and Lane, S.J., 1994 The origin of accretionary lapilli Bulletin of Volcanology 56 398411 10.1007/BF00326465.CrossRefGoogle Scholar
Hámor, G. (1997) Miocene palaeogeographic and facies maps of the Pannonian Basin. In: Geological Maps of Hungary 19. Geological Institute of Hungary.Google Scholar
Haq, B.U. Hardenbol, J. Vail, P.R., Wilgus, C.K. Hastings, B.J. Posamentier, H. van Wagoner, J.C. Ross, C.A. and Kendall, CG St C, 1988 Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level change Sea-level Change: an Integrated Approach Tulsa, Oklahoma Society for Sedimentary Geology 71108 10.2110/pec.88.01.0071.CrossRefGoogle Scholar
Harangi, S.z. Mason, P.R.D. and Lukács, R., 2005 Correlation and petrogenesis of silicic pyroclastic rocks in the Northern Pannonian Basin, Eastern-Central Europe: In situ trace element data of glass shards and mineral chemical constraints Journal of Volcanology and Geothermal Research 143 237257 10.1016/j.jvolgeores.2004.11.012.CrossRefGoogle Scholar
Huff, W.D. Bergström, S.M. Kolata, D.R. and Sun, H., 1997 The Lower Silurian Osmundsberg K-bentonite. Part II: Mineralogy, geochemistry, chemostratigraphy and tectonomagmatic significance Geological Magazine 135 1526 10.1017/S001675689700811X.CrossRefGoogle Scholar
Huff, W.D., Morgan, D.J., and Rundle, C.C. (1997b) Silurian K-bentonites of the Welsh Borderlands: Geochemistry, mineralogy and K-Ar ages of illitization. British Geological Survey, Report WG/96/45, 25 pp.Google Scholar
Huff, W.D. Bergström, S.M. and Kolata, D.R., 2000 Silurian K-bentonites of the Dnestr Basin, Podolia, Ukraine Journal of the Geological Society, London 157 493504 10.1144/jgs.157.2.493.CrossRefGoogle Scholar
Juvonen, R. Bartha, A. Lakomaa, T. Soikkeli, L. Bertalan, E. Kallio, E. and Ballók, M., 2004 Comparison of recoveries by lead fire assay and nickel sulphide fire assay in the determination of gold, platinum, palladium and rhenium in sulphide ore samples Geostandards Newsletter 28 123130 10.1111/j.1751-908X.2004.tb01048.x.Google Scholar
Klug, H.P. and Alexander, L.E., 1954 X-ray Diffraction Procedures New York-London-Paris John Wiley Sons Inc. 716 pp.Google Scholar
Kolata, D.R. Huff, W.D. and Bergström, S.M., 1998 Nature and regional significance of unconformities associated with the Middle Ordovician Hagan K-bentonite complex in the North American mid-continent Geological Society of America Bulletin 110 723739 10.1130/0016-7606(1998)110<0723:NARSOU>2.3.CO;2.2.3.CO;2>CrossRefGoogle Scholar
Lakshtanov, L.Z. and Stipp, S.L.S., 2004 Experimental study of Europium (III) coprecipitation with calcite Geochimica et Cosmochimica Acta 68 819827 10.1016/j.gca.2003.07.010.CrossRefGoogle Scholar
MacRae, N.D. Nesbitt, H.W. and Krinberg, B.I., 1992 Development of a positive Eu anomaly during diagenesis Earth and Planetary Science Letters 109 585591 10.1016/0012-821X(92)90116-D.CrossRefGoogle Scholar
Min, K. Renne, P.R. and Huff, W.D., 2001 40Ar/39Ar dating of Ordovician K-bentonites in Laurentia and Baltoscandia Earth and Planetary Science Letters 185 121134 10.1016/S0012-821X(00)00365-4.CrossRefGoogle Scholar
Náray-Szabó, I. Zsoldos, L. and Kálmán, A., 1965 Introduction to XRD Structure Investigation Budapest Association of Hungarian Chemists (in Hungarian).Google Scholar
Nash, W.P. and Crecraft, H.R., 1985 Partition coefficients for trace elements in silicic magmas Geochimica et Cosmochimica Acta 49 23092322 10.1016/0016-7037(85)90231-5.CrossRefGoogle Scholar
Pearce, N.J.G. Westgate, J.A. Perkins, W.T. and Preece, S.J., 2004 The application of ICP-MS methods to tephrochronological problems Applied Geochemistry 19 289322 10.1016/S0883-2927(03)00153-7.CrossRefGoogle Scholar
Pécskay, Z. Balogh, K. Széky, F.V. and Gyarmati, P., 1987 K/Ar geochronology of the Miocene volcanism in the Tokaj Mountains (in Hungarian) Bulletin of the Geological Society of Hungary 117 237253.Google Scholar
Pécskay, Z. and Molnár, F., 2002 Relationships between volcanism and hydrothermal activity in the Tokaj Mountains, North-east Hungary Geologica Carpathica 53 303314.Google Scholar
Pellenard, P. Deconinck, J.F. Huff, W.D. Thierry, J. Marchand, D. Fortwengler, D. and Trouiller, A., 2003 Characterization and correlation of Upper Jurassic (Oxfordian) bentonite deposits in the Paris Basin and the Subalpine Basin, France Sedimentology 50 1035 10.1046/j.1365-3091.2003.00592.x.CrossRefGoogle Scholar
Püspöki, Z., 2002 Miocene development of the Tardona Hills in relation to the facies and stratigraphic data of sediment sequences Hungary University of Debrecen 128 pp.Google Scholar
Püspöki, Z. Kozák, M. Kovács-Pálffy, P. Földvári, M. Mcintosh, R.W. and Vincze, L., 2005 Eustatic and tectonic/volcanic control in sedimentary bentonite formation — a case study of Miocene bentonite deposits from the Pannonian Basin Clays and Clay Minerals 53 7191 10.1346/CCMN.2005.0530108.CrossRefGoogle Scholar
Rischák, G. (1989) Direct XRD determination of amorphous phase in rocks and soils (in Hungarian). Annual Report of the Geological Institute of Hungary for 1987, 377394.Google Scholar
Rischák, G. and Viczián, I. (1974) Factors influencing the base reflection intensity of clay minerals (in Hungarian). Annual Report of the Geological Institute of Hungary for 1972, 229256.Google Scholar
Sene, J. (1967) Chronostratigraphie und Neostratotypen. Miozän M3, Miozän der Zentralen Paratethys. Vydavatelstvo Slovenskej Akademie Vied, Bratislava, pp. 1312.Google Scholar
Tits, J. Wieland, E. Bradbury, M.H. Eckert, P. and Schaible, A., 2003 The Uptake of Eu(III) and Th(IV) by Calcite under Hyperalkaline Conditions Villigen, Switzerland Paul Scherrer Institute.Google Scholar
Vakarcs, G. Hardenbol, J. Abreu, V.S. Vail, P.R. Várnai, P. Tari, G., Graciansky, P-CD Hardenbol, J. Jacquin, T. and Vail, P.R., 1998 Oligocene-Middle Miocene depositional sequences of the Central Paratethys and their correlation with regional stages Mesozoic and Cenozoic Sequence Stratigraphy of European Basins Tulsa, Oklahoma Society for Sedimentary Geology 209231 10.2110/pec.98.02.0209.Google Scholar
Van Wagoner, J.C. Mitchum, R.M. Campion, K.M. and Rahmanian, V.D., 1990 Siliciclastic sequence stratigraphy in well logs, cores, and outcrops: concepts for high-resolution correlation of time and facies AAPG Methods in Exploration Tulsa, Oklahoma American Association for Petroleum Geologists 55 pp..Google Scholar
Ver Straeten, C.A., 2004 K-bentonites, volcanic ash preservation, and implications for Early to Middle Devonian volcanism in the Acadian orogen, eastern North America GSA Bulletin 116 474489 10.1130/B25244.1.CrossRefGoogle Scholar
Yasumasa, O. Naotatsu, S. Daizo, I. Hinako, S. and Toshio, M., 2005 An experimental study on felsic rock-artificial seawater interaction: implications for hydrothermal alteration and sulfate formation in the Kuroko mining area of Japan Mineralium Deposita 39 813821 10.1007/s00126-004-0454-8.Google Scholar
Zhong, S. and Mucci, A., 1995 Partitioning of rare earth elements (REEs) between calcite and seawater solutions at 25°C and 1 atm, and high dissolved REE concentrations Geochimica et Cosmochimica Acta 59 443453 10.1016/0016-7037(94)00381-U.CrossRefGoogle Scholar