Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-24T16:27:01.487Z Has data issue: false hasContentIssue false

Further Consideration of the 29Si Nuclear Magnetic Resonance Spectrum of Kaolinite

Published online by Cambridge University Press:  02 April 2024

J. G. Thompson
Affiliation:
Research School of Chemistry, Australian National University, GPO Box 4, Canberra, ACT 2601, Australia
P. F. Barron
Affiliation:
Brisbane NMR Centre, School of Science, Griffith University, Nathan, Queensland 4111, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The introduction of artificial ±b/3 stacking faults into well-crystallized kaolinite by intercalating and removing hydrazine had no observable effect on the solid-state 29Si nuclear magnetic resonance spectrum of kaolinite. Also, the introduction of such stacking faults did not alter the hydroxyl-stretching region of the infrared spectrum, implying no change in the hydrogen bonding between the displaced layers. Calculations of Si...H distances and Si-O...H angles from reported structures for kaolinite indicated that the resolution of the two Si chemical environments was due to differences in hydrogen-bonding at the surface of the silicate sheet.

Type
Research Article
Copyright
Copyright © 1987, The Clay Minerals Society

References

Adams, J. M., 1983 Hydrogen atom positions in kaolinite by neutron profile refinement Clays & Clay Minerals 31 352356.CrossRefGoogle Scholar
Alma, N. C. M. Hays, G. R., Samoson, A. V. and Lippmaa, E. T., 1984 Characterization of synthetic dioctahedral clays by solid-state silicon-29 and aluminum-27 nuclear magnetic spectrometry Anal. Chem. 56 729733.CrossRefGoogle Scholar
Barrios, J., Plançon, A., Cruz, M. I. and Tchoubar, C., 1977 Qualitative and quantitative study of stacking faults in a hydrazine treated kaolinite-relationship with infrared spectra Clays & Clay Minerals 25 422429.CrossRefGoogle Scholar
Barron, P. F., Frost, R. L., Skjemstad, J. O. and Koppi, A. J., 1983 Detection of two silicon environments in kaolins via solid state 29Si NMR Nature 302 4950.CrossRefGoogle Scholar
Brindley, G. W. and Robinson, K., 1946 The structure of kaolinite Mineral. Mag. 27 242253.Google Scholar
Fyfe, C. A., Gobbi, G. C., Murphy, W. J., Ozubko, R. S. and Slack, D. A., 1984 Investigation of the contributions to the 29Si MAS NMR line widths of zeolites and the detection of crystallographically inequivalent sites by the study of highly siliceous zeolites J. Amer. Chem. Soc. 106 44354438.CrossRefGoogle Scholar
Grimmer, A.-R. and Radeglia, R., 1984 Correlation between the isotropic 29Si chemical shifts and the mean silicon-oxygen bond lengths in silicates Chem. Phys. Lett. 106 262265.CrossRefGoogle Scholar
Hinckley, D. N. and Swineford, A., 1963 Variability in “crystallinity” values among the kaolin deposits of the coastal plain of Georgia and South Carolina Clays and Clay Minerals, Proc. 11th Natl. Conf., Ottawa, Ontario, 1962 New York Pergamon Press 229235.Google Scholar
Klinowski, J., Thomas, J. M., Fyfe, C. A. and Hartman, J. S., 1981 Applications of MAS NMR 29Si. Evidence of two different kinds of Si-Al ordering in zeolite studies J. Phys. Chem. 85 25902594.CrossRefGoogle Scholar
Lippmaa, E., Magi, M., Samoson, A., Engelhardt, G. and Grimmer, A.-R., 1980 Structural studies of silicates by solid-state high resolution 29Si NMR J. Amer. Chem. Soc. 102 48894893.CrossRefGoogle Scholar
Lipsicas, M., Raythatha, R. H., Pinnavaia, T. J., Johnson, I. D., Giese, R F Jr Costanzo, P. M. and Robert, J.-L., 1984 Silicon and aluminum site distributions in 2:1 layered silicate clays Nature 309 604607.CrossRefGoogle Scholar
Magi, M., Lippmaa, E., Samoson, A., Engelhardt, G. and Grimmer, A.-R., 1984 Solid-state high-resolution silicon-29 chemical shifts in silicates J. Phys. Chem. 88 15181522.CrossRefGoogle Scholar
Oldfield, E., Kinsey, R. A., Smith, K. A., Nichols, J. A. and Kirkpatrick, R. J., 1983 High-resolution NMR of inorganic solids. Influence of magnetic centers on magic-angle sample-spinning lineshapes in some natural aluminosilicates J. Magn. Reson. 51 325329.Google Scholar
Radeglia, R. and Engelhardt, G., 1985 Correlation of Si-O-T (T = Si or Al) angles and 29Si NMR chemical shifts in silicates and aluminosilicates. Interpretation by semi-empirical quantum-chemical considerations Chem. Phys. Lett. 114 2830.CrossRefGoogle Scholar
Sanz, J. and Serratosa, J. M., 1984 29Si and 27Al high-resolution MAS-NMR spectra of phyllosilicates J. Amer. Chem. Soc. 106 47904793.CrossRefGoogle Scholar
Smith, J. V. and Blackwell, C. S., 1983 Nuclear magnetic resonance of silica polymorphs Nature 303 223225.CrossRefGoogle Scholar
Smith, K. A., Kirkpatrick, R. J., Oldfield, E. and Henderson, D. M., 1983 High-resolution silicon-29 nuclear magnetic resonance spectroscopic study of rock-forming silicates Amer. Mineral. 68 12061215.Google Scholar
Suitch, P. R. and Young, R. A., 1983 Atom positions in highly ordered kaolinite Clays & Clay Minerals 31 357366.CrossRefGoogle Scholar
Thompson, J. G., 1984 Two possible interpretations of 29Si nuclear magnetic resonance spectra of kaolin-group minerals Clays & Clay Minerals 32 233234.CrossRefGoogle Scholar
Thompson, J. G., 1984 29Si and 27Al nuclear magnetic resonance spectroscopy of 2:1 clay minerals Clay Miner. 19 229236.CrossRefGoogle Scholar
Thompson, J. G., 1985 Interpretation of solid-state 13C and 29Si nuclear magnetic resonance spectra of kaolinite intercalates Clays & Clay Minerals 33 173180.CrossRefGoogle Scholar
Thompson, J. G. and Withers, R. L., 1987 A transmission electron microscopy contribution to the structure of kaolinite Clays & Clay Minerals .CrossRefGoogle Scholar
Watanabe, T., Shimizu, H., Masuda, A. and Saito, H., 1983 Studies of 29Si spin-lattice relaxation times and paramagnetic impurities in clay minerals by magic-angle spinning 29Si-NMR and EPR Chem. Lett. 8 12931296.CrossRefGoogle Scholar
Zvyagin, B. B., 1960 Electron diffraction determination of the structure of kaolinite Sov. Phys. Crystallogr. 5 3242.Google Scholar