Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-07-03T12:34:09.986Z Has data issue: false hasContentIssue false

FTIR Reflectance vs. EPR Studies of Structural Iron in Kaolinites

Published online by Cambridge University Press:  28 February 2024

Thierry Delineau
Affiliation:
Laboratoire Environnement et Minéralurige, UA 235 CNRS, ENSG-INPL, B.P.40, 54501, Vandoeuvre Cédex, France
Thierry Allard
Affiliation:
Laboratoire de Minéralogie et Cristallographie, Universités Paris VI et VII, 4, Place Jussieu, 75252 Paris Cedex 05, France
Jean-Pierre Muller
Affiliation:
Laboratoire de Minéralogie et Cristallographie, Universités Paris VI et VII, 4, Place Jussieu, 75252 Paris Cedex 05, France O.R.S.T.O.M., Départment T.O.A., UR1G, 213, rue Lafayette, 75480 Paris Cedex 10, France
Odile Barres
Affiliation:
Laboratoire Environnement et Minéralurige, UA 235 CNRS, ENSG-INPL, B.P.40, 54501, Vandoeuvre Cédex, France
Jacques Yvon
Affiliation:
Laboratoire Environnement et Minéralurige, UA 235 CNRS, ENSG-INPL, B.P.40, 54501, Vandoeuvre Cédex, France
Jean-Maurice Cases
Affiliation:
Laboratoire Environnement et Minéralurige, UA 235 CNRS, ENSG-INPL, B.P.40, 54501, Vandoeuvre Cédex, France

Abstract

The substitution of Fe3+ in the kaolinite structure is studied by EPR spectrometry and by FTIR spectrometry on a large set of kaolins from different origins (sedimentary and primary ores, soil kaolins). The IR bands at 3598 and 875 cm−1, observed in the literature only in the case of disordered kaolins or in Fe-rich environments (synthetic, lateritic), are revealed by high-resolution IR analysis, whatever the origin and the total Fe content of the samples. The EPR bands corresponding to Fe3+ substituted in sites II of the octahedral sheet increase when the IR absorbance near 3600 cm−1 increases. Two IR absorption bands near 4465 cm−1 and 7025 cm−1 are observed for the first time, both in transmission and diffuse reflectance on all samples. These bands are assigned to the combination of the 3598 and 875 cm−1 bands and to the first harmonic of the band at 3598 cm−1, respectively. The area of the band at 4465 cm−1 in diffuse reflectance is quantitatively correlated to the abundance of Fe3+ located in centers II as measured by ESR. This directly confirms the assignment of the two IR bands at 3598 and 875 cm−1 to OH stretching and deformation vibration bands in octahedral FE3+ environment in the kaolinite structure, respectively. Effects due to the size of particles and to the main kaolins impurities on the near infrared spectra, are also discussed.

Type
Research Article
Copyright
Copyright © 1994, Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allard, T., Malengreau, N. and Muller, J. P., (1992) Approche spectroscopique de la typologie des kaolins des Charentes: Colloque bilan VRM 4 12 1992, Ministère de la Recherche et de la Technologie, Paris, 461478.Google Scholar
Angel, B. R., and Vincent, W. E. J., (1978) Electron spin resonance studies of iron oxides associated with the surface of kaolins: Clays & Clay Minerals 26, 263272.CrossRefGoogle Scholar
Barrios, J., Plançon, A., Cruz, M. J., and Tchoubar, C., (1977) Qualitative and quantitative study of stacking faults in a hydrazine treated kaolinite. Relationships with the infrared spectra: Clays & Clay Minerals 25, 422429.CrossRefGoogle Scholar
Bonnin, D., Muller, S., and Calas, G., (1982) Le fer dans les kaolins. Etude par spectométries RPE, Mössbauer, EXAFS: Bull. Minéral. 105, 467475.CrossRefGoogle Scholar
Braun, J. J., Pagel, M., Muller, J. P., Bilong, P., Michard, A., and Guillet, B., (1990) Cerium anomalies in lateritic profiles: Geochim. Cosmochim. Acta 54, 781795.CrossRefGoogle Scholar
Brindley, W. G., Kao, C. C., Harrison, J. L., Lipsicas, M., and Raythatha, R., (1986) Relation between structural disorder and other characteristics of kaolinites and dickites: Clays & Clay Minerals 34, 239249.CrossRefGoogle Scholar
Calas, G., (1988) Electron paramagnetic resonance: in Spectroscopic Methods in Mineralogy and Geology, Hawthorne, F. C., ed., Mineralogical Society of America, Reviews in Mineralogy 18, 513563.CrossRefGoogle Scholar
Cases, J. M., Lietard, O., Yvon, J. and Delon, J. F., (1982) Etude des propriétés cristallochimiques, morphologiques et superficielles de kaolinites désordonnées: Bull. Mineral. 105, 439457.Google Scholar
Cases, J. M., Cunin, Ph., Grillet, Y., Poinsignon, Ch. and Yvon, J., (1986) Methods of analyzing morphology of kaolinite: Relations between crystallographic and morphological properties: Clay Miner. 21, 5568.CrossRefGoogle Scholar
Crowley, J. K., and Vergo, N., (1988) Near-infrared reflectance spectra of mixtures of kaolin-group minerals: Use in clay minerals studies: Clays & Clay Minerals 36, 310316.CrossRefGoogle Scholar
Delineau, T., Yvon, J., Cases, J. M. and Villieras, F., (1992) Variabilité des kaolins des Charentes: Recherche typologique, guides d'applications: Colloque bilan VRM 4 12 1992, Ministère de la Recherche et de la Technologie, Paris, 413436.Google Scholar
Delvaux, B., Mestdagh, M. M., Vielvoye, L., and Herbillon, A. J., (1989) XRD, IR and ESR study of experimental alteration of Al-nontronite into mixed-layer kaolinite/smectite: Clay Miner. 24, 617630.CrossRefGoogle Scholar
Dubreuilh, J., Marchadour, P., and Thiry, M., (1984) Cadre géologique et mineralogie des argiles des Charentes, France: Clay Miner. 19, 2941.CrossRefGoogle Scholar
Fripiat, J. J., and van Olphen, H., (1979) Data Handbook for Clay Materials and Other Non-Metallic Minerals: Pergamon Press, New York, 319333.Google Scholar
Gaite, J. M., Ermakoff, P., and Muller, J. P., (1993) Characterization and origin of two Fe3+ EPR spectra in kaolinite: Phys. Chem. Miner. 20, 242247.CrossRefGoogle Scholar
Giese, R. F., (1988) Kaolin minerals. Structures and stabilities: in Hydrous Phyllosilicates, Reviews in Mineralogy 19, Bailey, S. W., ed., Mineralogical Society of America, Washington, D.C., 2966.CrossRefGoogle Scholar
Hall, P. L., (1980) The application of electron spin resonance to studies of clay minerals. I. Isomorphous substitution and external surface properties: Clay Miner. 15, 312335.CrossRefGoogle Scholar
Herbillon, A. J., Mestdagh, M. M., Virevoye, L., and Derouane, E. G., (1976) Iron in kaolinite with special reference from tropical soils: Clay Miner. 11, 201220.CrossRefGoogle Scholar
Hunt, G. R., and Salisbury, J. W., (1970) Visible and near infrared spectra of minerals and rocks: I. Silicates minerals: Mod. Geology 1, 283300.Google Scholar
Hunt, G. R., (1977) Spectral signatures of particulate minerals in the visible and near infrared: Geophysics 42, 501513.CrossRefGoogle Scholar
Kato, E., Kanaoha, S., and Inagahi, S., (1977) Infrared spectra of kaolin minerals in OH regions. I. On the glass slide methods for the measurement of the infrared spectra in OH region of clay minerals: Rept. Govt. Industr. Res. Inst. Agoya. 26, 203210.Google Scholar
Kemp, R. C., (1973) Electron spin resonance of iron (3+) in muscovite: Phys. Stat. Soi, B57, K79-K81.Google Scholar
Jackson, N. J., Willis-Richard, J., Manning, D. A. C., and Sams, M. S., (1989) Evolution of the Cornubian ore field, Southwest England. Part II. Mineral deposits and ore-forming processes: Econ. Geol. 84, 11011133.CrossRefGoogle Scholar
Jones, J. P. E., Angel, B. R. and Hall, P. L., (1974) Electron spin resonance studies of doped synthetic kaolinites: Clay Miner. 10, 257270.CrossRefGoogle Scholar
Ledoux, R. L., and White, J. L., (1964) Infrared studies of the hydroxyl group in intercalated kaolinite complexex: Clays and Clay Minerals, Proc. 13th Natl. Conf., Madison, Wisconsin, 1964, Bradley, W. F., and Bailey, S. W., eds., Pergamon Press, New York, 289315.Google Scholar
Lietard, O., (1977) Contribution à l'étude des propriétés physicochimiques, cristallographiques et morphologiques des kaolins: Thèse doct. es sci. INPL Nancy, 321 pp.Google Scholar
Meads, R. E., and Malden, P. J., (1975) Electron spin resonance in natural kaolinites containing Fe3+ and other transition metal ions: Clay Miner. 10, 313345.CrossRefGoogle Scholar
Mehra, O. P., and Jackson, M. L., (1960) Iron oxide removal from soil and clays by a dithionite-citrate system buffered with sodium carbonate: in Proc. 7 th. Natl. Conf. on Clays and Clay Minerals, Swineford, A., ed., Pergamon Press, Washington, D.C., 317327.Google Scholar
Mendelovici, E., Yariv, S. H., and Villaba, R., (1979) Iron bearing kaolinite in Venezuelan laterite. I. Infrared spectroscopy study and chemical dissolution evidence: Clay Miner. 14, 323327.CrossRefGoogle Scholar
Mestdagh, M. M., Vielvoye, L., and Herbillon, A. J., (1980) Iron in kaolinite. II. The relationships between kaolinite crystallinity and iron content: Clay Miner. 15, 114.CrossRefGoogle Scholar
Muller, J. P., (1988) Analyse pétrologique d'une formation latéritique meuble du Cameroun. Essai de traçage d'une différenciation supergène par les paragenèses minérales secondaires: Thèse Doct. es-Sciences, Université de Paris VII, ORSTOM. Pub., Paris, 188 pp.Google Scholar
Muller, J. P., and Bocquier, G., (1986) Dissolution of kaolinites and accumulation of iron oxides in lateritic-ferruginous nodules. Mineralogical and microstructural transformations: Geoderma 37, 113136.CrossRefGoogle Scholar
Muller, J. P., and Bocquier, G., (1987) Textural and mineralogical relationships between ferruginous nodules and surrounding clayey matrices in a laterite from Cameroon: in Proc. Intern. Clay Conf., Denver, 1985, Schultz, L. G., Olphen, H. van, and Mumpton, F. A., eds., The Clay Minerals Society, Bloomington, Indiana, 186196.Google Scholar
Muller, J. P., and Calas, G., (1989) Tracing kaolinites through their defect centers; Kaolinite paragenesis in a laterite (Cameroon): Econ. Geol. 84, 694707.CrossRefGoogle Scholar
Muller, J. P., and Calas, G., (1993) Genetic significance of paramagnetic centers in kaolinites: in Keller Kaolin 90 Symp., Bundy, M., Murray, H. H., and Harvey, C. C., eds., The Clay Minerals Society, Boulder, Colorado, 261289.Google Scholar
Muller, J. P., Ildefonse, Ph., and Calas, G., (1990) Paramagnetic defect centers in hydrothermal kaolinite from an altered tuff in the Nopal uranium deposit, Chihuahua, Mexico: Clays & Clay Minerals 38, 600608.CrossRefGoogle Scholar
Murray, H. H., (1988) Kaolin minerals: Their genesis and occurrences: in Hydrous Phyllosilicates, Reviews in Mineralogy 19, S. W. Bailey, ed., Mineralogical Society of America, Washington, D. C., 6790.CrossRefGoogle Scholar
Olivier, D., Védrine, J. C., and Pézerat, H., (1975) Application de la RPE à la localisation du fer3+ dans les smectites: Bull. Groupe Français des Argiles 27, 153165.CrossRefGoogle Scholar
Petit, S., and Decarreau, A., (1990) Hydrothermal (200°C) synthesis and crystal chemistry of iron rich kaolinite: Clay Miner. 25, 181196.CrossRefGoogle Scholar
Pinnavaia, T. J., (1981) Electron spin resonance studies of clay minerals: in Advanced Techniques for Clay Minerals Analysis, Developments in Sedimentology 34, J. J. Fripiat, ed., Elsevier, Amsterdam , 139161.Google Scholar
Plançon, A., Giese, R. F., and Snyder, R., (1988) The Hinckley index for kaolinites: Clay Miner. 23, 249260.CrossRefGoogle Scholar
Simmons, E. L., (1971) An equation relating the diffuse reflectance of weakly absorbing powdered samples to the fundamental optical parameters: Optica Acta 18, 5968.CrossRefGoogle Scholar
Yvon, J., Liétard, O., Cases, J. M., and Delon, J. F., (1982) Minéralogie des argiles kaoliniques des charentes: Bull Miner. 105, 431437.CrossRefGoogle Scholar