Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-22T22:22:07.522Z Has data issue: false hasContentIssue false

Formation of Sepiolite-Palygorskite and Related Minerals from Solution

Published online by Cambridge University Press:  01 January 2024

Rezan Birsoy*
Affiliation:
Dokuz Eylül University, Engineering Faculty Geology Department, 35100 Bornova, İzmir, Turkey
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Most of the world's sepiolite-palyg orskite precipitates in lacustrine and perimarine environments. Although these minerals can transform from precursor minerals, the most common formation mechanism involves crystallization from solution. In this study, equilibrium activity diagrams are calculated for sepiolite-palygorskite in the seven component system MgO-CaO-Al2O3-SiO2-H2O-CO2-HCl, employing available thermodynamic data for related minerals, aqueous species and water. Stability fields are illustrated graphically on plots of log [aMg2+/(aH+)2]vs. log [aH4SiO4o], using the activities for log [aAl3+/(aH+)3] defined by an arbitrarily chosen value and the approximate saturation limits of pyrophyllite + amorphous silica, kaolinite + amorphous silica, kaolinite + pyrophyllite, pyrophyllite + quartz and gibbsite. The formation of sepiolite-palygorskite from solution is more favored in the presence of amorphous silica than quartz. Lower aqueous aluminum activities favor the non-aluminum phases sepiolite and kerolite relative to the aluminum-containing phases palygorskite and saponite. The stability ranges of worldwide associations of magnesite and dolomite with sepiolite and palygorskite are also illustrated as a function of aluminum activity.

Type
Research Article
Copyright
Copyright © 2002, The Clay Minerals Society

References

Bowers, T.S. Jackson, K.J. and Helgeson, H.C., (1984) Equilibrium Activity Diagrams for Coexisting Minerals and Aqueous Solutions at Pressures and Temperatures to 5 kb and 600°C New York Springer-Verlag 397 pp.Google Scholar
Bozkaya, and Yalçin, H., (1993) Hekimhan yöresi sepiyolit-paligorskite grubu kil mineralleri: Mineraloji, jeokimya ve oluşum VI National Clay Symposium, Proceedings Istanbul, Turkey Bogaziçi University Pp. 111–126.Google Scholar
Chahi, A. Duplay, J. and Lucas, J., (1993) Analyses of palygorskite and associated clays from the Jbel Rhassoul (Morocco): Chemical characteristics and origin of formation Clays and Clay Minerals 41 401411 10.1346/CCMN.1993.0410401.CrossRefGoogle Scholar
Chen, C.H., (1975) A method for estimation of standard free energies of formation of silicate minerals at 298.15 K American Journal of Science 275 801817 10.2475/ajs.275.7.801.CrossRefGoogle Scholar
Chermak, J.A. and Rimstidt, J.D., (1989) Estimating the thermodynamic properties (ΔGf° and ΔH°f) of silicate minerals at 298 K from the polyhedral contributions American Mineralogist 74 1023 1031.Google Scholar
Christ, C.L. Hostetler, P.B. and Siebert, R.M., (1973) Studies in the system MgO-SiO2-CO2-H2O: III American Journal of Science 273 6583 10.2475/ajs.273.1.65.CrossRefGoogle Scholar
Drever, J.I., (1997) The Geochemistry of Natural Waters Surface and Groundwater Environments 3 New Jersey Prentice-Hall Inc. 436 pp.Google Scholar
Ece, Ö. I. and Çoban, F. (1990) Origin and significance of the sepiolite beds and nodules in the Miocene lacustrine basin, Eskişehir, Turkey. Pp. 234245 in: International Earth Sciences Congress on Agean Regions Proceedings I, (Savaşçin, M.Y. and Eronat, A.H., editors).Google Scholar
Esteoule-Choux, J., Singer, A. and Galán, E., (1984) Palygorskite in Tertiary deposits of the Armorican Massif Palygorskite-Sepiolite, Occurrences, Genesis and Uses Amsterdam Elsevier Pp. 75–84.Google Scholar
Galán, E. Castillo, A., Singer, A. and Galán, E., (1984) Sepiolite-Palygorskite in Spanish Tertiary basin: genetical patterns in continental environments Palygorskite-Sepiolite, Occurrences, Genesis and Uses Amsterdam Elsevier Pp. 87–124.Google Scholar
Garrels, R.M. and Christ, C.L., (1965) Solutions, Minerals, and Equilibria New York Harper and Row 450 pp.Google Scholar
Gustafsson, J.P., (2001) Modeling the acid-base properties and metal complexation of humic substances with the Stockholm Humic Model Journal of Colloid and Interface Science 244 102112 10.1006/jcis.2001.7871.CrossRefGoogle Scholar
Hay, R.L. Stoessell, R.K., Singer, A. and Galán, E., (1984) Sepiolite in the Amboseli Basin of Kenya: a new interpretation Palygorskite-Sepiolite, Occurrences, Genesis and Uses Amsterdam Elsevier Pp. 125–136.Google Scholar
Helgeson, H.C., Delany, J.M., Nesbitt, H.W. and Bird, D.K. (1978) Summary and critique of the thermodynamic properties of rock-forming minerals. American Journal of Science, 278–A, 227 pp.Google Scholar
Isphording, W.C., Singer, A. and Galán, E., (1984) The clays of Yucatan, Mexico: A contrast in genesis Palygorskite-Sepiolite, Occurrences, Genesis and Uses Amsterdam Elsevier Pp. 59–73.Google Scholar
Jones, B.F., (1986) Clay mineral diagenesis in lacustrine sediments US Geological Survey Bulletin 1578 291 300.Google Scholar
Jones, B.F. Galán, E. and Bailey, S.W., (1988) Sepiolite and palygorskite Hydrous Phyllosilicates (Exclusive of Micas) Washington, D.C. Mineralogical Society of America Pp. 631–674.Google Scholar
Kadir, S. and Baş, H., (1995) Mineralogy of Koyunaǵali (Mihaliççik-Eskişehir) sepiolite occurrences deposits VII National Clay Symposium Proceedings Ankara Hacettepe University Pp. 88–105.Google Scholar
Leguey, S. Vidales, M. Casas, J., Singer, A. and Galán, E., (1984) Diagenetic palygorskite in marginal continental detrital deposits located in the south of the tertiary Duero Basin (Segovia, Spain) Palygorskite-Sepiolite, Occurrences, Genesis and Uses Amsterdam Elsevier Pp. 149–157.Google Scholar
Long, D.G.F. McDonald, A.M. Facheng, Y. Houjei, L. Zili, Z. and Xu, T., (1997) Palygorskite in palaeosols from the Miocene Xiacaowan Formation of Jiangsu and Anhui Provinces, P.R. China Sedimentary Geology 112 281295 10.1016/S0037-0738(97)00043-2.CrossRefGoogle Scholar
Mattigod, S.V. and Sposito, G., (1978) Improved method for estimating the standard free energies for formation (ΔGf° 298.15) of smectites Geochimica et Cosmochimica Acta 42 17531762 10.1016/0016-7037(78)90232-6.CrossRefGoogle Scholar
Nordstrom, D.K. and Munoz, J.L., (1985) Geochemical Thermodynamics Menlo Park, California The Benjamin/Cummings Publishing Co. Inc. 477 pp.Google Scholar
Nriagu, J.O., (1975) Thermochemical approximations for clay minerals American Mineralogist 60 834 839.Google Scholar
Robie, R.A. and Hemingway, B.S. (1995) Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 bar (105 Pascals) Pressure and Higher Temperature. US Geological Survey Bulletin, 2131, Washington, D.C., 461 pp.Google Scholar
Robie, R.A., Hemingway, B.S. and Fisher, J.R. (1978) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 pascals) pressure and at higher temperatures. US Geological Survey Bulletin, 1452, 456 pp.Google Scholar
Singer, A. and Galán, E., (1984) Palygorskite-Sepiolite, Occurrences, Genesis and Uses Amsterdam Elsevier 352 pp.Google Scholar
Singer, A. and Norrish, K., (1974) Pedogenic palygorskite occurrences in Australia American Mineralogist 59 508 517.Google Scholar
Stoessell, R.K., (1988) 25°C and 1 atm dissolution experiments of sepiolite and kerolite Geochimica et Cosmochimica Acta 52 365374 10.1016/0016-7037(88)90092-0.CrossRefGoogle Scholar
Stoessell, R.K. and Hay, R.L., (1978) The geological origin of sepiolite and kerolite at Amboseli, Kenya Contributions to Mineralogy and Petrology 65 255267 10.1007/BF00375511.CrossRefGoogle Scholar
Tardy, Y. and Duplay, J., (1992) A method of estimating the Gibbs free energies of formation of hydrated and dehydrated clay minerals Geochimica et Cosmochimica Acta 56 30073029 10.1016/0016-7037(92)90287-S.CrossRefGoogle Scholar
Tardy, Y. and Garrels, R.M., (1974) A method estimating the Gibbs energies of formation of layer silicates Geochimica et Cosmochimica Acta 38 11011116 10.1016/0016-7037(74)90007-6.CrossRefGoogle Scholar
Velde, B., (1985) Clay Minerals, A Physico-Chemical Explanation of their Occurrences Amsterdam Elsevier 225 256.Google Scholar
Wagnam, D.D., Evans, H.E., Parker, V.B., Schumm, R.H., Hallow, I., Bailey, S.M., Churney, K.L. and Nuttall, R.L. (1982) The NBS Tables of Chemical Thermodynamic Properties. Journal of Physical Chemistry Reference Data, 11, National Bureau of Standards, Washington, D.C., 393 pp.Google Scholar
Weaver, C.E., Singer, A. and Galán, E., (1984) Origin and geologic implications of the palygorskite deposits of SE United States Palygorskite-Sepiolite, Occurrences, Genesis and Uses Amsterdam Elsevier Pp. 39–58.Google Scholar
Wollast, R. Mackenzie, F.T. and Bricker, O.P., (1968) Experimental precipitation and genesis of sepiolite at earth-surface conditions American Mineralogist 53 1645 1662.Google Scholar
Yalçin, H. and Bozkaya, , (1995) Kangal-Çetinkaya alt baseni (SivasBaseni) gölsel paligorskitlerinin mineralojisi ve jeokimyasi VII National Clay Symposium Proceedings Ankara Hacettepe University Pp. 19–32.Google Scholar
Yalçin, H. and Bozkaya, , (1995) Sepiolite-Palygorskite from Hekimhan region (Turkey) Clays and Clay Minerals 43 705717 10.1346/CCMN.1995.0430607.CrossRefGoogle Scholar
Yeniyol, M. and Öztunali, E., (1985) The mineralogy and the genesis of the Yunak sepiolite II Turkish National Clay Symposium Proceedings Ankara, Turkey Hacettepe University Pp. 171–187.Google Scholar