Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-07T19:24:04.922Z Has data issue: false hasContentIssue false

Formation of Allophane and Beidellite during Hydrothermal Alteration of Volcanic Glass Below 200°C

Published online by Cambridge University Press:  28 February 2024

Motoharu Kawano
Affiliation:
Department of Environmental Sciences and Technology, Faculty of Agriculture, Kagoshima University 1-21-24 Korimoto, Kagoshima 890, Japan
Katsutoshi Tomita
Affiliation:
Institute of Earth Sciences, Faculty of Science, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Experimental alteration of volcanic glass has been carried out in distilled water at 200°C and 150°C. The formation and transformation processes of alteration products have been examined by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRD), infrared absorption analysis, and X-ray photoelectron spectroscopy. SEM and TEM clearly show that amorphous aluminum-silicate coatings with allophane particles precipitate on the surface of volcanic glass during the earliest alteration stage. Noncrystalline flaky and/or fibrous materials are formed from the allophane aggregates and from the amorphous coatings as new reaction products. The flaky and/or fibrous materials curl inward and transform into 100–500 nm circular smectite. The Al/Si atomic ratio of 1.09 for allophane decreases progressively to 0.65 for smectite through 0.86 for noncrystalline transitional material. The smectite has d(06) spacing of 1.497 Å and consists mainly of Si, Al, and small amounts of Fe, Ca, and Na.

Type
Research Article
Copyright
Copyright © 1992, The Clay Minerals Society

References

Abrajano, T. A., Bates, J. K., Woodland, A. B., Bradley, J. P. and Bourcier, W. L., 1990 Secondary phase formation during nuclear waste-glass dissolution Clays & Clay Minerals 38 537548 10.1346/CCMN.1990.0380511.CrossRefGoogle Scholar
Banba, T., Murakami, T., Isobe, H., Oversby, V. M. and Brown, P. W., 1990 Growth rate of alteration layer and elemental mass losses during leaching of borosilicate nuclear waste glass Scientific Basis for Nuclear Waste Management XIII Pittsburgh Materials Research Society 363370.Google Scholar
Birrell, K. E. and Fieldes, M., 1952 Allophane in volcanic ash soils J. Soil Sci. 3 156166 10.1111/j.1365-2389.1952.tb00639.x.CrossRefGoogle Scholar
Dudas, M. J. and Harward, M. E., 1975 Weathering and authigenic halloysite in soil developed from Mazama ash Soil Sci. Soc. Am. Proc. 39 561566 10.2136/sssaj1975.03615995003900030048x.CrossRefGoogle Scholar
Dudas, M. J. and Harward, M. E., 1975 Inherited and detrital 2:1 type phyllosilicates in soils developed from Mazama ash Soil Sci. Soc. Am. Proc. 39 571577 10.2136/sssaj1975.03615995003900030050x.CrossRefGoogle Scholar
Eggleton, R. A., 1980 High resolution electron microscopy of feldspar weathering Clays & Clay Minerals 28 173178 10.1346/CCMN.1980.0280302.CrossRefGoogle Scholar
Eggleton, R. A., 1987 Noncrystalline Fe-Si-Al-oxyhydroxides Clays & Clay Minerals 35 2937 10.1346/CCMN.1987.0350104.CrossRefGoogle Scholar
Eggleton, R. A. and Keller, J., 1982 The palagonitization of limburgite glass—A TEM study N. Jb. Miner. Mh. Jg. H7 321336.Google Scholar
Farmer, V. C., 1974 The layer silicates The Infrared Spectra of Minerals London Mineralogical Society 331363 10.1180/mono-4.15.CrossRefGoogle Scholar
Farmer, V. C., Krishnamurti, G S R and Huang, P. M., 1991 Synthetic allophane and layer-silicate formation in SiO2-Al2O3-FeO-Fe2O3-MgO-H2O systems at 23°C and 89°C in a calcareous environment Clays & Clay Minerals 39 561570 10.1346/CCMN.1991.0390601.CrossRefGoogle Scholar
Farmer, V. C., McHardy, W. J., Palmieri, F., Violante, A. and Violante, P., 1991 Synthetic allophane formed in calcareous environments: Nature, conditions of formation, and transformations Soil Sci. Soc. Am. J. 55 11621166 10.2136/sssaj1991.03615995005500040044x.CrossRefGoogle Scholar
Frederickson, A. F., 1951 Mechanisms of weathering Geol. Soc. Am. Bull. 62 221232 10.1130/0016-7606(1951)62[221:MOW]2.0.CO;2.CrossRefGoogle Scholar
Guilbert, J. M. and Sloane, R. L., 1968 Electron-optical study of hydrothermal fringe alteration of plagioclase in quartz monzonite, Butte district, Montana Clays & Clay Minerals 16 215221 10.1346/CCMN.1968.0160303.CrossRefGoogle Scholar
Guinier, A., 1963 X-ray Diffraction in Crystals, Imperfect Crystals and Amorphous Bodies San Francisco Freeman 7274.Google Scholar
Henmi, T. and Wada, K., 1976 Morphology and composition of allophane Amer. Miner. 61 379390.Google Scholar
Jackson, M. L., Hzeung, Y., Corey, R. B., Evans, E. J. and Vanden Heuvel, R. C., 1952 Weathering sequence of clay-size minerals in soils and sediments. II. Chemical weathering of layer silicates Proc. Soil Soc. Amer. 16 36 10.2136/sssaj1952.03615995001600010002x.CrossRefGoogle Scholar
Kawano, M. and Tomita, K., 1991 Mineralogy and genesis of clays in postmagmatic alteration zones, Makurazaki volcanic area, Kagoshima Prefecture, Japan Clays & Clay Minerals 39 597608 10.1346/CCMN.1991.0390605.CrossRefGoogle Scholar
Kloprogge, J. T., Jansen, J B H and Geus, J. W., 1990 Characterization of synthetic Na-beidellite Clays & Clay Minerals 38 409414 10.1346/CCMN.1990.0380410.CrossRefGoogle Scholar
Malcolm, R. L., Nettleton, W. D. and McCracken, R. J., 1969 Pedogenic formation of montmorillonite from a 2:1–2:2 intergrade clay mineral Clays & Clay Minerals 16 405414 10.1346/CCMN.1969.0160602.CrossRefGoogle Scholar
Murakami, T., Banba, T., Jercinovic, M. J., Ewing, R. C., Lutze, W. and Ewing, R. C., 1989 Formation and evolution of alteration layers on borosilicate and basalt glasses: Initial stage Scientific Basis for Nuclear Waste Management XII Pittsburgh Materials Research Society 6572.Google Scholar
Newman, A C D Brown, G. and Newman, A. C. D., 1987 The chemical constitution of clays Chemistry of Clays and Clay Minerals London Mineralogical Society 1128.Google Scholar
Parfitt, R. L., Furkert, R. J. and Henmi, T., 1980 Identification and structure of two types of allophane from volcanic ash soils and tephra Clays & Clay Minerals 28 328334 10.1346/CCMN.1980.0280502.CrossRefGoogle Scholar
Parfitt, R. L. and Henmi, T., 1980 Structure of some allophanes from New Zealand Clays & Clay Minerals 28 285294 10.1346/CCMN.1980.0280407.CrossRefGoogle Scholar
Parfitt, R. L., Russell, M. and Orbell, G. E., 1983 Weathering sequence of soils from volcanic ash involving allophane and halloysite, New Zealand Geoderma 29 4157 10.1016/0016-7061(83)90029-0.CrossRefGoogle Scholar
Parfitt, R. L. and Kimble, J. M., 1989 Conditions for formation of allophane in soils Soil Sci. Soc. Am. J. 53 971977 10.2136/sssaj1989.03615995005300030057x.CrossRefGoogle Scholar
Plee, D., Gatineau, L. and Fripiat, J. J., 1987 Pillaring processes of smectites with and without tetrahedral substitution Clays & Clay Minerals 35 8188 10.1346/CCMN.1987.0350201.CrossRefGoogle Scholar
Reiche, P., 1950 A Survey of Weathering Processes and Products Albuquerque The University of New Mexico Press.Google Scholar
Schutz, A., Stone, W E E Poncelet, G. and Fripiat, J. J., 1987 Preparation and characterization of bidimensional zeolitic structures obtained from synthetic beidellite and hydroxy-aluminum solutions Clays & Clay Minerals 35 251261 10.1346/CCMN.1987.0350402.CrossRefGoogle Scholar
Snetsinger, K. G., 1967 High-alumina allophane as a weathering product of plagioclase Amer. Miner. 52 254262.Google Scholar
Stubičan, V. and Roy, R., 1961 A new approach to assignment of infrared absorption bands in layer-structure silicates Z. Kristallogr. 115 200214 10.1524/zkri.1961.115.3-4.200.CrossRefGoogle Scholar
Tazaki, K., 1986 Observation of primitive clay precursors during microcline weathering Contrib. Mineral. Petrol. 92 8688 10.1007/BF00373965.CrossRefGoogle Scholar
Tazaki, K. and Fyfe, W. S., 1985 Discovery of “primitive clay precursors” on alkali-feldspar Earth Science (Chikyu Kagaku) J. Asso. Geological Collaboration in Japan 39 443445.Google Scholar
Tazaki, K., Fyfe, W. S., Schultz, L. G., van Olphen, H. and Mumpton, F. A., 1987 Formation of primitive clay precursors on K-feldspar under extreme leaching conditions Proc. Inter. Clay Conf., Denver, 1985 Bloomington, Indiana The Clay Mineralogical Society 5358.Google Scholar
Tazaki, K. and Fyfe, W. S., 1987 Primitive clay precursors formed on feldspar Canadian J. Earth Sciences 24 506527 10.1139/e87-051.CrossRefGoogle Scholar
Tazaki, K., Fyfe, W. S. and van der Gaast, S. J., 1989 Growth of clay minerals in natural and synthetic glasses Clays & Clay Minerals 37 348354 10.1346/CCMN.1989.0370408.CrossRefGoogle Scholar
Uno, Y., Kohyama, N., Sato, M. and Takeshi, H., 1986 High-temperature phase transformation of montmorillonites J. Miner. Soc. Japan 17 155161.Google Scholar
Wada, K. and Kakuto, Y., 1985 Embryonic halloysites in Ecuadorian soils derived from volcanic ash Soil Sci. Soc. Amer. J. 49 13091318 10.2136/sssaj1985.03615995004900050047x.CrossRefGoogle Scholar
Wada, K., Yamauchi, H., Kakuto, Y. and Wada, S. I., 1985 Embryonic halloysites in a paddy soil derived from volcanic ash Clay Sci. 6 177189.Google Scholar
Wada, K., Wilson, M., Kakuto, Y. and Wada, S. I., 1988 Synthesis and characterization of a hollow spherical form of monolayer aluminosilicate Clays & Clay Minerals 36 1118 10.1346/CCMN.1988.0360102.CrossRefGoogle Scholar
Wada, K., Dixon, J. B. and Weed, S. B., 1989 Allophane and imogolite Minerals in Soil Environments 10511088.CrossRefGoogle Scholar
Watanabe, T. and Sudo, T., 1969 Study of small-angle scattering of some clay minerals Proc. Int. Clay Conf., Tokyo 1969 173181.Google Scholar