Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-16T19:19:24.822Z Has data issue: false hasContentIssue false

First-Principles Molecular Dynamics Insight into Fe2+ Complexes Adsorbed on Edge Surfaces of Clay Minerals

Published online by Cambridge University Press:  01 January 2024

Xiandong Liu*
Affiliation:
State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210093, P.R. China
Evert Jan Meijer
Affiliation:
Van’t Hoff Institute for Molecular Sciences and Amsterdam Centre for Multiscale Modelling, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV, Amsterdam, The Netherlands
Xiancai Lu
Affiliation:
State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210093, P.R. China
Rucheng Wang
Affiliation:
State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210093, P.R. China
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Using first-principles molecular-dynamics simulations, probable inner-sphere complexes of Fe2+ adsorbed on the edge surfaces of clay minerals were investigated. Ferrous ions are important reductants in natural processes and their properties can be altered significantly by complexation on edge surfaces of clay minerals. However, the microscopic picture of adsorption sites and structures of Fe2+ is difficult to reveal with modern experimental techniques and, therefore, remains unclear. From the results of first-principles molecular-dynamics simulations, evidence has been provided that complexes on ≡Si—O sites were the most stable forms, which should be responsible for the experimentally observed pH-dependent uptake. Such complexation was found to be strong enough to distort the local coordination structures of Si—O tetrahedra in the substrate. Analyses showed that Fe2+—Owater coordination structures were dominated by the solvent with surface groups participating in the complexes via H bonding. The present study provided a microscopic basis for understanding the chemical processes involving surface-complexed Fe2+ ions.

Type
Article
Copyright
Copyright © Clay Minerals Society 2012

References

Amira, S. Spångberg, D. Probst, M. and Hermansson, K., 2004 Molecular dynamics simulation of Fe2+ (aq) and Fe3+ (aq) Journal of Physical Chemistry B 108 496502.CrossRefGoogle Scholar
Anderson, R.L. Ratcliffe, I. Greenwell, H.C. Williams, P.A. Cliffe, S. and Coveney, P.V., 2010 Clay swelling — A challenge in the oilfield Earth Science Reviews 98 201216.CrossRefGoogle Scholar
Baeyens, B. and Bradbury, M.H., 1997a A mechanistic description of Ni and Zn sorption on Na-montmorillonite. 1.Titration and sorption measurements Journal of Contaminant Hydrology 27 199222.CrossRefGoogle Scholar
Bradbury, M.H. and Baeyens, B., 997b 1 A mechanistic description of Ni and Zn sorption on Na-montmorillonite. 2. Modeling Journal of Contaminant Hydrology 27 223248.CrossRefGoogle Scholar
Becke, A.D., 1988 Density-functional exchange-energy approximation with correct asymptotic behavior Physical Review A 38 30983100.CrossRefGoogle ScholarPubMed
Bergaya, F. Theng, B.K.G. and Lagaly, G., 2006 Handbook of Clay Science Amsterdam Elsevier.Google Scholar
Bickmore, B.R. Rosso, K.M. Nagy, K.L. Cygan, R.T. and Tadanier, C.J., 2003 Ab initio determination of edge surface structures for dioctahedral 2:1 phyllosilicates: Implications for acid-base reactivity Clays and Clay Minerals 51 359371.CrossRefGoogle Scholar
Bleam, W.F., 1993 Atomic theories of phyllosilicatesquantum-chemistry, statistical-mechanics, electrostatic theory, and crystal-chemistry Reviews of Geophysics 31 5173.CrossRefGoogle Scholar
Bylaska, E.J. Valiev, M. Rustad, J.R. and Weare, J.H., 2007 Structure and dynamics of the hydration shells of the Al3+ ion Journal of Chemical Physics 126 104505.CrossRefGoogle ScholarPubMed
Car, R. and Parrinello, M., 1985 Unified approach for molecular-dynamics and density-functional theory Physical Review Letter 55 2471.CrossRefGoogle ScholarPubMed
Charlet, L. Silvester, E. and Liger, E., 1998 N-compound reduction and actinide immobilisation in surficial fluids by Fe(II): the surface Fe(III)OFe(II)OH degrees species, as major reductant Chemical Geology 151 8593.CrossRefGoogle Scholar
Churakov, S.V., 2006 Ab initio study of sorption on pyrophyllite: Structure and acidity of the edge sites Journal of Physical Chemistry B 110 41354146.CrossRefGoogle ScholarPubMed
Churakov, S.V., 2007 Structure and dynamics of the water films confined between edges of pyrophyllite: A first principles study Geochimica et Cosmochimica Acta 71 11301144.CrossRefGoogle Scholar
CPMD, Copyright IBM Corp 1990–2006, Copyright MPI für Festkörperforschung Stuttgart 1997–2001.Google Scholar
Cygan, R.T. Liang, J.J. and Kalinichev, A.G., 2004 Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field Journal of Physical Chemistry B 108 12551266.CrossRefGoogle Scholar
Cygan, R.T. Greathouse, J.A. Heinz, H. and Kalinichev, A.G., 2009 Molecular models and simulations of layered materials Journal of Materials Chemistry 19 24702481.CrossRefGoogle Scholar
Den Auwer, C. Simoni, E. Conradson, S. and Madic, C., 2003 Investigating actinyl oxo cations by X-ray absorption spectroscopy European Journal of Inorganic Chemistry 21 38433859.CrossRefGoogle Scholar
Denecke, M., 2006 Actinide speciation using X-ray absorption fine structure spectroscopy Coordination Chemistry Review 250 730754.CrossRefGoogle Scholar
Ensing, B. and Baerends, E.J., 2002 Reaction path sampling of the reaction between iron(II) and hydrogen peroxide in aqueous solution Journal of Physical Chemistry A 106 79027910.CrossRefGoogle Scholar
Ensing, B. Buda, F. Blöchl, P.E. and Baerends, E.J., 2002 A Car-Parrinello study of the formation of oxidizing intermediates from Fenton’s reagent in aqueous solution Physical Chemistry Chemical Physics 4 36193627.CrossRefGoogle Scholar
Fredrickson, J.K. Zachara, J.M. Kennedy, D.W. Kukadappu, R.K. Mckinley, J.P. Heald, S.M. Liu, C. and Plymale, A.E., 2004 Reduction of TcO4- by sediment-associated biogenic Fe(II) Geochimica et Cosmochimica Acta 68 31713187.CrossRefGoogle Scholar
Gehin, A. Greneche, J.M. Tournassat, C. Brendle, J. Rancourt, D.G. and Charlet, L., 2007 Reversible surfacesorption-induced electron-transfer oxidation of Fe(II) at reactive sites on a synthetic clay mineral Geochimica et Cosmochimica Acta 71 863876.CrossRefGoogle Scholar
Grenthe, I. Stumm, W. Laaksuharju, M. Nilsson, A.C. and Wikberg, P., 1992 Redox potentials and redox reactions in deep groundwater systems Chemical Geology 98 131150.CrossRefGoogle Scholar
Gu, X. and Evans, L.J., 2007 Modelling the adsorption of Cd(II), Cu(II), Ni(II), Pb(II), and Zn(II) onto Fithian illite Journal of Colloid and Interface Science 307 317325.CrossRefGoogle Scholar
Gu, X. and Evans, L.J., 2008 Surface complexation modelling of Cd(II), Cu(II), Ni(II), Pb(II), and Zn(II) adsorption onto kaolinite Geochimica et Cosmochimia Acta 72 267276.CrossRefGoogle Scholar
Gu, X.Y. Evans, L.J. and Barabash, S.J., 2010 Modeling the adsorption of Cd (II), Cu (II), Ni (II), Pb (II) and Zn (II) onto montmorillonite Geochimica et Cosmochimica Acta 74 57185728.CrossRefGoogle Scholar
Hartman, P. and Perdock, W.G., 1955a On the relations between structure and morphology of crystals I. Acta Crystallographica 8 4952.CrossRefGoogle Scholar
Hartman, P. and Perdock, W.G., 1955b On the relations between structure and morphology of crystals II. Acta Crystallographica 8 521524.CrossRefGoogle Scholar
Hartman, P. and Perdock, W.G., 1955c On the relations between structure and morphology of crystals III. Acta Crystallographica 8 525529.CrossRefGoogle Scholar
Herdman, G.J. and Neilson, G.W., 1992 Ferric ion (Fe(III)) coordination in concentrated aqueous-electrolyte solutions Journal of Physics: Condensed Matter 4 627638.Google Scholar
Hofstetter, T.B. Neumann, A. and Schwarzenbach, R.P., 2006 Reduction of nitroaromatic compounds by Fe(II) species associated with iron-rich smectites Environmental Science & Technology 40 235242.CrossRefGoogle ScholarPubMed
Ikhsan, J. Wells, J.D. Johnson, B.B. and Angove, M.J., 2005 Surface complexation modeling of the sorption of Zn(II) by montmorillonite Colloids and Surfaces A 252 3341.CrossRefGoogle Scholar
Jaisi, D.P. Liu, C. Dong, H. Blake, R.E. and Fein, J.B., 2008 Fe(II) sorption onto nontronite (NAu-2) Geochimica et Cosmochimica Acta 72 53615371.CrossRefGoogle Scholar
Kleinman, L. and Bylander, D.M., 1982 Efficacious form for model pseudopotentials Physical Review Letters 48 14251428.CrossRefGoogle Scholar
Lagaly, G., Bergaya, F. Theng, B.K.G. and Lagaly, G., 2006 Colloid clay science Handbook of Clay Science Amsterdam Elsevier 141246.CrossRefGoogle Scholar
Lee, C. Yang, W. and Parr, R.G., 1988 Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density Physical Review B 37 785789.CrossRefGoogle ScholarPubMed
Liu, X.D. and Lu, X.C., 2006 A thermodynamic understanding of clay-swelling inhibition by potassium ions Angewandte Chemie International Edition 45 63006303.CrossRefGoogle ScholarPubMed
Liu, X.D. Lu, X.C. Wang, R.C. Zhou, H.Q. and Xu, S.J., 2008a Effects of layer charge distribution on the thermodynamic and microscopic properties of Cs-smectite Geochimica et Cosmochimica Acta 72 18371847.CrossRefGoogle Scholar
Liu, X.D. Lu, X.C. Wang, R.C. Zhou, H.Q. and Xu, S.J., 2008b Surface complexes of acetate on edge surfaces of 2:1 type phyllosilicate: Insights from density functional theory calculation Geochimica et Cosmochimica Acta 72 58965907.CrossRefGoogle Scholar
Liu, X.D. Lu, X.C. Wang, R.C. Meijer, E.J. and Zhou, H.Q., 2012 Atomic-scale structures of interfaces between phyllosilicate edges and water Geochimica et Cosmochimica Acta 81 5668.CrossRefGoogle Scholar
Morel, F.M.M., 1997 Discussion on: “A mechanistic description of Ni and Zn sorption on Na-montmorillonite. Part I: Titration and sorption measurements. Part II: Modeling” by Bart Baeyens and Michael H. Bradbury Journal of Contaminant Hydrology 28 710.CrossRefGoogle Scholar
Murad, E. Fischer, W.R., Stucki, J.W. Goodman, B.A. and Schwertmann, U., 1988 Geobiochemical cycle of iron Iron in Soils and Clay Minerals Dordrecht, The Netherlands D. Reidel 118.Google Scholar
Peretyazhko, T. Zachara, J.M. Heald, S.M. Jeon, B.-H. Kukkadapu, R.K. Liu, C. Moore, D. and Resch, C.T., 2008 Heterogeneous reduction of Tc(VII) by Fe(II) at the solid-water interface Geochimica et Cosmochimica Acta 72 15211539.CrossRefGoogle Scholar
Remsungnen, T. and Rode, B.M., 2003 QM/MM molecular dynamics simulation of the structure of hydrated Fe(II) and Fe(III) ions Journal of Physical Chemistry A 107 23242328.CrossRefGoogle Scholar
Schultz, C. and Grundl, T., 2004 pH dependence of ferrous sorption onto two smectite clays Chemosphere 57 13011306.CrossRefGoogle ScholarPubMed
Sposito, G., 1984 The Surface Chemistry of Soils New York Oxford University Press.Google Scholar
Sposito, G. Skipper, N.T. Sutton, R. Park, S.-H. Soper, A.K. and Greathouse, J.A., 1999 Surface geochemistry of the clay minerals Proceedings of the National Academy of Sciences 96 3358.CrossRefGoogle ScholarPubMed
Stucki, J.W., Bergaya, F. Theng, B.G.K. and Lagaly, G., 2006 Properties and behavior of iron in clay minerals Handbook of Clay Science Amsterdam Elsevier 423476.CrossRefGoogle Scholar
Troullier, N. and Martins, J.L., 1991 Efficient pseudopotentials for plane-wave calculations Physical Review B 43 19932006.CrossRefGoogle ScholarPubMed
Um, W. Chang, H.S. Icenhower, J.P. Lukens, W.W. Serne, R.J. Qafoku, N.P. Westsik, J.H. Buck, E.C. and Smith, S.C., 2011 Immobilization of 99-Technetium (VII) by Fe(II)-goethite and limited reoxidation Environmental Science & Technology 45 49044913.CrossRefGoogle ScholarPubMed
Viani, A. Gaultieri, A.F. and Artioli, G., 2002 The nature of disorder in montmorillonite by simulation of X-ray powder patterns American Mineralogist 87 966975.CrossRefGoogle Scholar
White, G.N. and Zelazny, L.W., 1988 Analysis and implications of the edge structure of dioctahedral phyllosilicates Clays and Clay Minerals 36 141146.CrossRefGoogle Scholar