Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-03T15:29:39.944Z Has data issue: false hasContentIssue false

Fe-Speciation in Kaolins: A Diffuse Reflectance Study

Published online by Cambridge University Press:  28 February 2024

Nathalie Malengreau*
Affiliation:
Laboratoire de Minéralogie-Cristallographie, URA CNRS 09 Universités de Paris 6 et 7, 4 Place Jussieu, 75 252 Paris Cedex 05, France
Jean-Pierre Muller
Affiliation:
Laboratoire de Minéralogie-Cristallographie, URA CNRS 09 Universités de Paris 6 et 7, 4 Place Jussieu, 75 252 Paris Cedex 05, France O.R.S.T.O.M., Département T.O.A., 213 Rue La Fayette, 75 480, Paris Cedex 10, France
Georges Calas
Affiliation:
Laboratoire de Minéralogie-Cristallographie, URA CNRS 09 Universités de Paris 6 et 7, 4 Place Jussieu, 75 252 Paris Cedex 05, France
*
*Present address: Department of Soil Science, University of California, Berkeley, CA 94720
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Diffuse reflectance spectra of kaolins have been recorded in samples from different environments. They show the systematic presence of Fe-oxides, even in bleached kaolins, with no contribution from the Fe3+ ions substituted in kaolinite. Second derivative spectra of various Fe-phases (hematite, goethite, lepidocrocite, maghemite, akaganeite, ferrihydrite and Fe-polymer) may be differentiated by the position of a diagnostic band corresponding to the 2(6A1) → 2(4T1(4G)) transition. The systematic comparison of diffuse reflectance spectra of unbleached and bleached kaolins has demonstrated the differences between the Fe-oxides occurring as coatings and as occluded phases. The features observed in second derivative spectral curves are consistent with assignments of crystal field transitions to goethite, hematite, akaganeite, and aged hydrous ferric oxides. The optical determination of the Fe-phases associated to kaolins assists in the interpretation of the formation conditions of these minerals.

Type
Research Article
Copyright
Copyright © 1994, Clay Minerals Society

References

Alderton, D. H. M., and Rankin, A. H., (1983) The character and evolution of hydrothermal fluids associated with the kaolinized St. Austell granite, SW England: Geol. Soc. London. J. 140, 297310.CrossRefGoogle Scholar
Angel, B. R., and Vincent, W. E. J., (1978) Electron spin resonance studies of iron oxides associated with the surface of kaolins: Clays & Clay Minerals 26, 263272.CrossRefGoogle Scholar
Aniel, B., and Leroy, J., (1985) The reduced uraniferous mineralizations associated with the volcanic rocks of the Sierra Peña Blanca (Chihuahua, Mexico): Amer. Mineral. 70, 12901297.Google Scholar
Barron, V., and Torrent, J., (1986) Use of the Kubelka-Munk theory to study the influence of iron oxides on soil colour: J. Soil Sci. 37, 499510.CrossRefGoogle Scholar
Bedidi, A., and Cervelle, B., (1993) Light scattering by spherical particles with hematite and goethite-like optical properties. Effect of water impregnation: J. Geophys. Res. 98, 11,941–11,952.CrossRefGoogle Scholar
Bonnin, D., Muller, S., and Calas, G., (1982) Le fer dans les kaolins. Etude par spectrométries RPE, Mössbauer, EXAFS: Bull. Minéral. 105, 467475.CrossRefGoogle Scholar
Boudeulle, M., and Muller, J.-P., (1988) Structural characteristics of hematite and goethite and their relationships with kaolinite in a laterite from Cameroon. A TEM study: Bull. Minéral. 111, 149166.CrossRefGoogle Scholar
Bristow, C. M., (1993) The genesis of the china clays of South-West England—A multistage story: in Kaolin Genesis and Utilization, Murray, H. H., Bundy, W. M., and Harvey, C. C., eds., Clay Minerals Society of America, Boulder, Colorado, 171203.Google Scholar
Burns, R. G., (1985) Electronic spectra of minerals: in Chemical Bonding and Spectroscopy in Mineral Chemistry, Berry, F. J., and Vaughan, D. J., eds., Chapman and Hall, London and New York, 63101.Google Scholar
Cahill, J. E., (1979) Derivative spectroscopy: Understanding its application: Amer. Lab., 7985.Google Scholar
Calas, G., (1977) Les phénomènes d'altération hydrothermale et leur relation avec les minéralisations uranifères en milieu volcanique: Le cas des ignimbrites tertiaires de la Sierra de Peña Blanca, Chihuahua (Mexique): Sci. Geol. Bull. 30, 318.CrossRefGoogle Scholar
Calas, G., (1986) Spectroscopies optiques dans les minéraux: Absorption, réflectivité, luminescence: in Méthodes Spectroscopiques Appliquées aux Minéraux 1, G. Calas, ed., Société française de Minéralogie et de Cristallographie, Paris, 141185.Google Scholar
Combes, J.-M., Manceau, A., Calas, G., and Bottero, J.-Y., (1989) Formation of ferric oxides from aqueous solutions: A polyhedral approach by X-ray absorption spectroscopy: I. Hydrolysis and formation of ferric gels: Geochim. Cosmochim. Acta 53, 583594.CrossRefGoogle Scholar
Cornell, R. M., Schneider, W., and Giovanoli, R., (1991) Preparation and characterization of colloidal α-FeOOH with a narrow range size distribution: J. Chem. Soc. Farad. Trans. 87, 869873.CrossRefGoogle Scholar
Cornell, R. M., and Schwertmann, U., (1979) Influence of organic anions on the crystallization of ferrihydrite: Clays & Clay Minerals 27, 402410.CrossRefGoogle Scholar
Davis, J. A., and Kent, D. B., (1990) Surface complexation modeling in aqueous geochemistry: in Mineral-Water Interface Geochemistry, Reviews in Mineralogy, Vol. 23, Hochella, M. F., and White, A. F., eds., Mineralogical Society of America, Washington, D.C., 177260.CrossRefGoogle Scholar
Dombrowski, T., and Murray, H. H., (1984) Thorium. A key element in differentiating Cretaceous and Tertiary kaolins in Georgia and South Carolina: in Proc. 27th Internatl. Geol. Cong., Non-Metallic Mineral Ores, Vol. 15, VNU Science Press, Moscow, 305317.Google Scholar
Dunfield, L. G., and Read, J. F., (1972) Determination of reactions rates by the use of cubic spline interpolation: J. Chem. Phys. 57, 2,178–2,183.CrossRefGoogle Scholar
Evans, D. L., and Adams, J. B., (1980) Amorphous gels as possible analogues to martian weathering products: Proc. Lunar Planet. Sci. Conf. 11, 757763.Google Scholar
Exley, C. S., and Phil, M. A. D., (1959) Magmatic differentiation and alteration in the St. Austell granite: Q. J. Geol. Soc. London 114, 197230.CrossRefGoogle Scholar
Faivre, P., Herrera, V., Burgos, L., Jimenez, L., Molina, C., and Ruiz, E., (1983) Estudia general de suelos de la Comisaria de Vichada. Llanos Orientales de Colombia: I.G.A.C., Bogota, 462 pp.Google Scholar
Herbillon, A. J., Mestdagh, M. M., Vielvoye, L., and Derouane, E. G., (1976) Iron in kaolinite with special reference to kaolinite from tropical soils: Clay Miner. 11, 201220.CrossRefGoogle Scholar
Huguenin, R. L., and Jones, J. L., (1986) Intelligent information extraction from reflectance spectra: Absorption band positions: J. Geophys. Res. 91, 9,585–9,598.CrossRefGoogle Scholar
Hunt, G. R., Salisbury, J. W., and Lenhoff, C. J., (1971) Visible and near-infrared spectra of minerals and rocks. III. Oxides and hydroxides: Mod. Geol. 2, 195205.Google Scholar
Ildefonse, P., Agrinier, P., and Muller, J.-P., (1990) Crystal chemistry and isotope geochemistry of alteration associated with the uranium Nopal I deposit, Chihuahua, Mexico: Chem. Geol. 84, 371372.CrossRefGoogle Scholar
Jackson, N. J., Willis-Richard, J., Manning, D. A. C., and Sams, M. S., (1989) Evolution of the Cornubian ore field, Southwest England: Part II. Mineral deposits and ore-forming processes: Econ. Geol. 84, 1,101–1,133.CrossRefGoogle Scholar
Jeanroy, E., Rajot, R. A., Pillon, P., and Herbillon, A. J., (1991) Differential dissolution of hematite and goethite in dithionite and its implication on soil yellowing: Geoderma 50, 7994.CrossRefGoogle Scholar
Jepson, W. B., (1988) Structural iron in kaolinites and in associated ancillary minerals: in Iron in Soil and Clay Minerals, Stucki, J. W., Goodman, B. A., and Schwertmann, U., eds., Reidel, Dordrecht, 467536.Google Scholar
Jepson, W. B., and Rowse, J. B., (1975) The composition of kaolinite. An electron microscope microprobe study: Clays & Clay Minerals 23, 310317.CrossRefGoogle Scholar
Kampf, N., and Schwertmann, U., (1983) Goethite and hematite in a climosequence in Southern Brazil and their application in classification of kaolinitic soils: Geoderma 29, 2739.CrossRefGoogle Scholar
Karickhoff, S. W., and Bailey, G. W., (1973) Optical absorption spectra of clay minerals: Clays & Clay Minerals 21, 5970.CrossRefGoogle Scholar
Kosmas, C. S., Curi, N., Bryant, R. B., and Franzmeier, D. P., (1984) Characterization of iron oxide minerals by second derivative visible spectroscopy: Soil Sci. Soc. Amer. J. 48, 401405.CrossRefGoogle Scholar
Kosmas, C. S., Franzmeier, D. P., and Schulze, D. G., (1986) Relationship among derivative spectroscopy, color, crystallite dimensions and Al-substitution of synthetic goethites and hematites: Clays & Clay Minerals 34, 625634.CrossRefGoogle Scholar
Leroy, J. L., Aniel, B., and Poty, B., (1987) The Sierra Peña Blanca (Mexico) and the Meseta Los Frailes (Bolivia): The uranium concentration mechanisms in volcanic environment during hydrothermal processes: Uranium 3, 211234.Google Scholar
Meads, R. E., and Malden, P. J., (1975) Electron spin resonance in natural kaolinites containing Fe3+ and other transition metal ions: Clay Miner. 10, 313345.CrossRefGoogle Scholar
Mehra, O. P., and Jackson, M. L., (1960) Iron oxide removal from soil and clays by a dithionite-citrate system buffered with sodium carbonate: Proc. 7th Natl. Conf. Clays Clay Miner., Pergamon Press, New York, 317327.Google Scholar
Mestdagh, M. M., Vielvoye, L., and Herbillon, A. J., (1980) Iron in kaolinite: II The relationship between kaolinite crystallinity and iron content: Clay Miner. 15, 113.CrossRefGoogle Scholar
Morris, R. V., Lauer, H. V., Lawson, C. A., Gibson, E. K. Jr., Nace, G. A., and Stewart, C., (1985) Spectral and other physicochemical properties of submicron powders of hematite (α-Fe2O3), maghemite (γ-Fe2O3), magnetite (Fe3O4), goethite (α-FeOOH) and lepidocrocite (γ-FeOOH): J. Geophys. Res. 90, 3,126–3,144.CrossRefGoogle ScholarPubMed
Morris, R. V., Neely, S. C., and Mendell, W. W., (1982) Application of Kubelka-Munk theory of diffuse reflectance to geologic problems: The role of scattering: Geophys. Res. Lett. 9, 113116.CrossRefGoogle Scholar
Muller, J.-P., (1988) Analyse pétrologique d'une formation latéritique meuble du Cameroun. Essai de traçage d'une différenciation supergène par les paragenèses minérales secondaires: Travaux et Documents Microfichés 50, ORSTOM, Paris, 664 pp.Google Scholar
Muller, J.-P., and Bocquier, G., (1986) Dissolution of kaolinites and accumulation of iron oxides in lateritic ferruginous nodules. Mineralogical and microstructural transformations: Geoderma 37, 113136.CrossRefGoogle Scholar
Muller, J.-P., and Bocquier, G., (1987) Textural and mineralogical relationships between ferruginous nodules and surrounding clayey matrices in a laterite from Cameroon: in Proc. Internatl. Clay Conf., Denver, 1985, Schultz, L. G., Olphen, H. Van, and Mumpton, F. A., eds., The Clay Minerals Society, Bloomington, Indiana, 186196.Google Scholar
Muller, J.-P., and Calas, G., (1993) Genetic significance of paramagnetic centers in kaolinites: in Kaolin Genesis and Utilization, Murray, H. H., Bundy, W. M., and Harvey, C. C., eds., Clay Minerals Society of America, Boulder, Colorado, 261289.Google Scholar
Muller, J.-P., Ildefonse, P., and Calas, G., (1990) Paramagnetic defect centers in hydrothermal kaolinite from an altered tuff in the Nopal uranium deposit, Chihuahua, Mexico: Clays & Clay Minerals 38, 600608.CrossRefGoogle Scholar
Murphy, P. J., Posner, A. M., and Quirk, J. P., (1976) Characterization of hydrolyzed ferric ion solutions. A comparison of the effects of various anions on the solutions: J. Coll. Interf. Sci. 56, 312319.CrossRefGoogle Scholar
Murray, H. H., (1988) Kaolin minerals. Their genesis and occurrences: in Hydrous Phyllosilicates, Reviews in Mineralogy, Vol. 19, Bailey, S. W., ed., Mineralogical Society of America, Washington, D.C., 6789.CrossRefGoogle Scholar
O'Day, P. A., Brown, G. E. Jr., and Parks, G. A., (1990) EXAFS study of aqueous Co(II) sorption complexes on kaolinite and quartz surfaces: in X-ray Absorption Fine Structure, Sixth Internatl. Conf. on X-ray Absorption Fine Structure, 1990, York, Hasnain, S. Samar, ed., Warrington, UK, 260262.Google Scholar
Patterson, S. H., and Murray, H. H., (1984) Kaolin refractory clay, ball clay and halloysite in North America, Hawaii and the Carribean region: Geol. Surv. Prof. Paper 1306, U.S. Government Printing Office, Washington, 56 pp.Google Scholar
Petit, S., and Decarreau, A., (1990) Hydrothermal (200°C) synthesis and crystal chemistry of iron-rich kaolinites: Clay Miner. 25, 181196.CrossRefGoogle Scholar
Plançon, A., Giese, R. F., and Snyder, R., (1988) The Hinckley index for kaolinites: Clay Miner. 23, 249260.CrossRefGoogle Scholar
Plançon, A., Giese, R. F., and Snyder, R., Drits, V. A., and Bookin, A. S., (1989) Stacking faults in the kaolin-group minerals: Defect structures of kaolinite: Clays & Clay Minerals 37, 203210.CrossRefGoogle Scholar
Rengasamy, P., (1976) Substitution of iron and titanium in kaolinites: Clays & Clay Minerals 24, 265266.CrossRefGoogle Scholar
Schwertmann, U., (1988) Occurrence and formation of iron oxides in various pedoenvironments: in Iron in Soil and Clay Minerals, Stucki, J. W., Goodman, B. A., and Schwertmann, U., eds., Reidel, Dordrecht, 267308.Google Scholar
Schwertmann, U., and Cornell, R. M., (1991) Iron Oxides in the Laboratory, VCH publishers Weinheim, 101110.Google Scholar
Schwertmann, U., and Murad, E., (1990) The influence of aluminum on iron oxides: XIV. Al-substituted magnetite synthesized at ambient temperatures: Clays & Clay Minerals 38, 196202.CrossRefGoogle Scholar
Schwertmann, U., Murad, E., and Schulze, D. G., (1982) Is there Holocene reddening (hematite formation) in soils of axeric temperate areas?: Geoderma 27, 209223.CrossRefGoogle Scholar
Schwertmann, U., and Thalmann, H., (1976) The influence of [Fe(II)], [Si] and pH on the formation of lepidocrocite and ferrihydrite during oxidation of aqueous FeCl2 solutions: Clay Miner. 14, 189200.CrossRefGoogle Scholar
Sheppard, S. M. F., (1977) The Cornubian batholith SW England; D/H and 18O/16O studies of kaolinite and other alteration minerals: J. Geol. Soc. London 133, 573591.CrossRefGoogle Scholar
Sherman, D. M., Burns, R. G., and Burns, V. M., (1982) Spectral characteristics of the iron oxides with application to the martian bright region mineralogy: J. Geophys. Res. 87, 10,169–10,180.CrossRefGoogle Scholar
Sherman, D. M., and Waite, D., (1985) Electronic spectra of Fe3+ oxides and oxide hydroxides in the near IR to near UV: Amer. Mineral. 70, 1,262–1,269.Google Scholar
Strens, R. G. J., and Wood, B. J., (1979) Diffuse reflectance spectra and optical properties of some iron and titanium oxides and oxyhydrpxides: Mineral. Mag. 43, 347354.CrossRefGoogle Scholar
Tossell, J. A., Vaughan, D. J., and Johnson, K. H., (1974) The electronic structure of rutile, wustite and hematite from molecular orbital calculations: Amer. Mineral. 59, 319334.Google Scholar
van Olphen, H., and Fripiat, J. J., (1978) Data Handbook for Clay Materials and Other Non-Metallic Minerals: Pergamon Press, Oxford, 344 pp.Google Scholar
Watari, F., Delavignette, P., Van Landuyt, J., and Amelinckx, S., (1983) Electron microscopic study of dehydration transformations III. High resolution observation of the reactions process FeOOH-αFe2O3: J. Solid State Chem. 48, 4964.CrossRefGoogle Scholar
Weidner, V. R., and Hsia, J. J., (1981) Reflection properties of pressed polytetrafluoroethylene powder: J. Opt. Soc. Amer. 71, 856861.CrossRefGoogle Scholar
Wendlandt, W. W. M., and Hecht, H. G., (1966) Reflectance Spectroscopy: Interscience publishers, John Wiley & Sons, New York, 298 pp.Google Scholar