Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-07-08T01:18:29.175Z Has data issue: false hasContentIssue false

A Ferroan Nontronite from the Red Sea Geothermal System

Published online by Cambridge University Press:  01 July 2024

James L. Bischoff*
Affiliation:
Department of Geological Sciences, University of Southern California, Los Angeles, Calif. 90007, U.S.A.

Abstract

A smectite rich in ferrous iron and low in aluminum occurs abundantly in the Red Sea Geothermal Deposits, and appear to be forming at present.

Chemical analyses and Mössbauer spectra indicate the mineral is intermediate in composition between nontronite and the as yet undescribed trioctahedral ferrous iron end member.

Résumé

Résumé

Une smectite riche en fer ferreux et pauvre en aluminium est abondamment rencontrée dans les dépôts géothermaux de la Mer Rouge, et il apparaît qu’elle se forme actuellement.

Les analyses chimiques et les spectres Mössbauer indiquent que ce minéral a une composition intermédiaire entre celle de la nontronite et celle du terme ultime de la série trioctaédrique à fer ferreux non encore décrit.

Kurzreferat

Kurzreferat

Ein Smectit (Seifenstein) reich an Ferro-Eisen und mit niedrigen Aluminiumgehalt kommt reichlich vor in den geothemischen Ablagerungen des Roten Meeres.

Chemische Analyse und Mössbauer Spektren zeigen an, dass das Mineral in seiner Zusammensetzung eine Mittelstellung zwischen Nontronit und dem bisher nicht beschriebenen trioktaedrischen Ferro-Eisen-Endglied einnimmt.

Резюме

Резюме

Смектит, богатый примесью двухвалентного железа и с низким содержанием алюминия, находится в изобилии в геотермических отложениях Красного моря и, кажется, образовывается даже в настоящее время.

Химические анализы и спектры Моссбауера указывают, что этот минерал является промежуточным продуктом между нонтронитом и еще неописанным конечным элементом решетки трех-октахедральным двухвалентным железом.

Type
Research Article
Copyright
Copyright © Clay Minerals Society 1972

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bennet, H. and Hawley, W. G., (1965) Methods of Silicate Analysis 2nd Edn New York Academic Press.Google Scholar
Bischoff, J. L., Degens, E. T. and Ross, D., (1969) The Red Sea Geothermal deposits: Their mineralogy, chemistry, and genesis Hot Brines and Recent Heavy Metal Deposits in the Red Sea New York Springer 368401.CrossRefGoogle Scholar
Brewer, P. G., Spencer, D. W., Degens, E. T. and Ross, D., (1969) A note on the Chemical Composition of the Red Sea Brines Hot Brines and Recent Heavy Metal Deposits in the Red Sea New York Springer.Google Scholar
Grim, R. E., (1968) Clay Mineralogy 2nd Edn New York McGraw-Hill.Google Scholar
Hathaway, J. C., (1956) Procedures for clay mineral analyses used in the sedimentary petrology laboratory of the U.S. Geological Survey Clay Minerals Bull. 3 813.CrossRefGoogle Scholar
Kolthoff, I. M. and Sandell, E. B., (1952) Textbook of Quantitative Inorganic Analysis 3rd Edn New York Macmillan.Google Scholar
MacEwan, D. M. C. and Brown, G., (1961) Montmorillonite minerals The Identification and Crystal Structure of Clay Minerals London Mineralogical Soc 132142.Google Scholar
Mehra, O. P. and Jackson, M. L., (1958) Iron oxide removal from soil and clays by a dithionite-citrate system buffered with sodium bicarbonate Clays and Clay Minerals 5 317327.Google Scholar
Osthaus, B. B., (1953) Chemical determination of tetrahedral ions in nontronite and montmorillonite Clays and Clay Minerals 2 404417.Google Scholar
Taylor, G. L., Ruotsals, A. E. and Keeling, R. O. Jr., (1968) Analysis of iron in layer silicates by Mössbauer spectroscopy Clay and Clay Minerals 16 381391.CrossRefGoogle Scholar
Weaver, C. E., Wampler, J. M. and Pecuil, T. E., (1967) Mössbauer analysis of iron in clay minerals Science 156 504508.CrossRefGoogle ScholarPubMed