Published online by Cambridge University Press: 01 July 2024
The pH, Eh, electrical conductivity (EC), and the amounts and valency of replaceable iron were measured periodically on Fe2+- and Fe3+-saturated montmorillonite and cation-exchange resin at three temperatures. Differences in the pattern of change of pH, Eh, and EC with time appear to be related more to the histories and modes of preparation of the systems than to intrinsic differences in the hydrolysis of the iron in them. Electron transfer reactions involving crystal components of the clay can cause oxidation of adsorbed Fe2+ ions; the activation energy (Ea) for oxidation on the clay's surface was 6 kcal/mole, less than a third of the activation energy reported for Fe2+ oxidation in solution. In the Fe2+-resin, where Ea = 10.7 kcal/mole, perturbed surface-water molecules may act as electron acceptors enhancing Fe2+ oxidation.
Polymerization and precipitation of the adsorbed iron is affected by the necessity to maintain electroneutrality, the ability of the iron-hydroxy ions and small polymers to move about in the voids of the ion exchanger, and the steric hindrance posed by the matrix of the ion exchanger to the formation of large polymers. In resin, little or no iron precipitates, probably due both to steric hindrance and the inability of the resin to release ionic components to maintain electroneutrality. In clays, steric hindrance is small, and Al and Mg are released from the crystal to maintain electroneutrality, thus the precipitation of iron is abundant and is controlled by the rate of release of Al and Mg from the crystal.
Периодически замерялись рН, Eh, электрическая проводимость (ЭП), и количества и валентность замещаемого железа монтмориллонита и катионно-обменной смолы, насыщенных Fe2+ и Fe3+ при трех температурах. Различия в картине изменения рН, Eh, и ЭП в времени, по видимому, более связаны с предисториями и способами приготовления систем, чем с присущими различиями гидролиза железа в них. Реакции переноса электронов, включающие кристаллические компоненты глины, могут вызывать окисление адсорбированных ионов Fe2+; энергия активизации (ЭА) для окисления на поверхности глины равнялась 6 ккал/мол, меньше трети энергии активации, потребной для окисления Fe2+ в растворе. В Ре2+-смоле, где ЭА = 10,7 ккал/мол, возмущенные поверхностные молекулы воды могут действовать как электронные акценторы, помогая окислению Fe2+.
Полимеризация и осаждение адсорбированного железа находится под воздействием необходимости поддерживать электронную нейтральность, способность гидрокси-железных ионов и небольших полимеров передвигаться в полостях ионо-обменника, и пространственного препятствия, вызываемого кристаллической решеткой ионо-обменника, образованию больших полимеров. В смоле мало или вообще нет железных осадков, вероятно из-за пространственного препятствия и неспособности смолы высвобождать ионные компоненты для поддержания электронной нейтральности. В глинах пространственное препятствие незначительно, и Аl и Mg высвобождаются из кристалла для поддержания электронной нейтральности; в результате железо осаждается в изобилии и контролируется степенью высвобождения Аl и Mg из кристалла. [N.R.]
Der pH, Eh, die elektrische Leitfähigkeit (EC), sowie die Mengen und Leitfähigkeit ersetzbaren Eisens wurde in gleichen Abständen an Fe2+- und Fe3+-gesättigten Montmorilloniten und an Kationen-austauschharzen gemessen. Unterschiede in der Art, wie sich pH, Eh, und EC im Laufe der Zeit ändern, scheinen mehr davon abzuhängen, wie die Systeme präpariert wurden, als von wirklichen Unterschieden bei der Hydrolyse des enthaltenen Eisens. Elektronenübergangsreaktionen, die Kristallbestandteile des Tons betreffen, können die Oxidation des adsorbierten Fe2+ verursachen; die Aktivierungsenergie (Ea) für die Oxidation an der Tonoberfläche betrug 6 Kcal/Mol, weniger als ein Drittel der Aktivierungsenergie, die für die Oxidation von Fe2+ in Lösung angegeben wird. Im Fe2+-IonenaustausChharz, mit einer Ea von 10,7 Kcal/Mol, Können gestörte Oberflächenwassermoleküle als Elektronenakzeptor wirken und die Oxidation von Fe2+ verstärken.
Die Polymerisation und Ausfällung des adsorbierten Eisens wird von folgenden Faktoren beeinflußt: von der notwendigen Erhaltung der Elektroneutralität, von der Fähigkeit der Eisenhydroxyionen und kleiner Polymere, in den Hohlräumen des Ionenaustauschers umherzuwandern und von sterischen Widerständen der Matrix des Ionenaustauschers gegen die Bildung großer Polymere. Im Ionenaustauschharz fällt wenig oder kein Eisen aus, wahrscheinlich sowohl wegen sterischer Widerstände als auch weil das Ionenaustauschharz keine Ionen abgeben kann, die die Elektroneutralität Aufrechterhielten. In Tonen ist der sterische Widerstand gering, und Al und Mg werden vom Kristall abgegeben, um die Elektroneutralität zu erhalten, sodaß die Eisenausfällung stark ist. Sie wird durch die Geschwindigkeit bestimmt, mit der Al und Mg vom Kristall abgegeben werden. [U.W.]
Les pH, Eh, conductivité électrique (EC), et les quantités et la valence de fer remplaçeable ont été périodiquement mesurés sur une montmorillonite saturée en Fe2+ et Fe3+ et une résine à cation-échangeable à trois températures. Les différences dans le dessin de changements de pH, Eh, et EC avec le temps semblent être plus apparentées aux histoires et aux modes de préparation des systèmes qu’à des différences intrinsèques à l'hydrolyse du fer qu'ils contiennent. Les réactions de transfert d’électrons impliquant les composés cristaux de l'argile peuvent causer l'oxidation d'ions Fe2+ adsorbés; l'energie d'activation (Ea) pour l'oxidation à la surface de l'argile était 6 kcal/mole, moins qu'un tiers de l’énergie d'activation rapportée pour l'oxidation de Fe2+ en solution. Dans la résine-Fe2+, où Ea = 10.7 kcal/mole, des molécules d'eau de surface perturbées peuvent se comporter comme des acceptantes d’électrons favorisant l'oxidation de Fe2+.
La polymérisation et la précipitation du fer adsorbé sont affectées par la nécessité de maintenir l’électroneutralité, l'abilité des ions hydroxy-fer et des petits polymères de se mouvoir dans les vides de l’échangeur d'ions, et l'obstacle stérique posé par la matrice de l’échangeur d'ions à la formation de larges polymères. Dans la résine, peu ou pas de fer ne précipite, probablement à la fois à cause d'un obstacle stérique et de l'inabilité de la résine à lâcher des composés ioniques pour maintenir l’électroneutralité. Dans les argiles, l'obstacle stérique est petit, et Al et Mg sont lâchés du cristal pour maintenir l’électroneutralité, ainsi, la précipitation du fer est abondante et est contrôlée par l'allure de dégagement d'Al et de Mg du cristal. [D.J.]