Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-05T04:49:45.026Z Has data issue: false hasContentIssue false

Fast and Slow Phosphate Sorption by Goethite-Rich Natural Materials

Published online by Cambridge University Press:  28 February 2024

J. Torrent
Affiliation:
Departamento de Ciencias y Recursos Agrícolas y Forestales, Universidad de Córdoba, Apdo 3048, 14080 Córdoba, Spain
U. Schwertmann
Affiliation:
Lehrstuhl für Bodenkunde, Technische Universität München 8050 Freising-Weihenstephan, Germany
V. Barrón
Affiliation:
Departamento de Ciencias y Recursos Agrícolas y Forestales, Universidad de Córdoba, Apdo 3048, 14080 Córdoba, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Although phosphate sorption by goethite and other less-abundant Fe oxides strongly influences the concentration of this anion in the soil solution and aquatic environments, relatively little is known on the P-sorption characteristics of natural goethites. For this reason, we examined the P-sorption capacity and time course of P sorption of 10 goethite-rich soil, ferricrete and lake ore samples, in which the content and nature of mineral impurities were unlikely to affect P sorption significantly. Phosphate sorption could be adequately described by a modified Freundlich equation including a time term. The amount of P sorbed after 1 day of equilibration at a concentration of 1 mg P/liter ranged widely (0.36–2.04 /μmol P/m2). The total P sorbed after 75 days of equilibration varied less, in relative terms (1.62–3.18 μmol P/m2), i.e., a higher slow sorption tended to compensate for a lower initial (fast) sorption. Total sorbed P (X̄ = 2.62, SD = 0.52 μmol P/m2) was similar to the sorption capacity of synthetic goethites, suggesting a common sorption mechanism and the predominance of one type of crystal face, which, according to previous transmission electron microscope observations, might be the (110).

The extent of the slow reaction correlated to the ratio between micropore surface area and total surface area, as well as to oxalate-extractable Fe, which is an estimation of the ferrihydrite content. Ferrihydrite impurities might affect the slow reaction by contributing to the microporosity of some samples. Silicate adsorbed on the surface of the goethites was readily desorbed during phosphate sorption and did not significantly affect the extent of the slow sorption process.

Type
Research Article
Copyright
Copyright © 1992, The Clay Minerals Society

References

Ainsworth, C. C., Girvin, D. C., Zachara, J. M. and Smith, S. C., 1989 Chromate adsorption on goethite: Effects of aluminium substitution Soil Sci. Soc. Amer. J 53 411418 10.2136/sssaj1989.03615995005300020017x.CrossRefGoogle Scholar
Ainsworth, C. C. and Sumner, M. E., 1985 Effect of aluminum substitution in goethite on phosphorus adsorption: II. Rate of adsorption Soil Sci. Soc. Amer. J 49 11491153 10.2136/sssaj1985.03615995004900050015x.CrossRefGoogle Scholar
Ainsworth, C. C., Sumner, M. E. and Hurst, V. C., 1985 Effect of aluminum substitution in goethite on phosphorus adsorption: I. Adsorption and isotopic exchange Soil Sci. Soc. Amer. J 49 11421149 10.2136/sssaj1985.03615995004900050014x.CrossRefGoogle Scholar
Amouric, M., Baronnet, A., Nahon, D. and Didier, P., 1986 Electron microscopic investigations of iron oxyhydroxides and accompanying phases in lateritic iron-crusts pisolites Clays & Clay Minerals 34 4552 10.1346/CCMN.1986.0340106.CrossRefGoogle Scholar
Anderson, M. A., Tejedor-Tejedor, M. I. and Stanforth, R. R., 1985 Influence of aggregation on the uptake kinetics of phosphate by goethite Environ. Sci. Technol 19 632637 10.1021/es00137a009.CrossRefGoogle ScholarPubMed
Barrow, N. J., 1987 Reactions with Variable-charge Soils Dordrecht Martinus Nijhoff Publishers 10.1007/978-94-009-3667-6.CrossRefGoogle Scholar
Barrow, N. J. and Shaw, T. C., 1975 The slow reactions between soil and anions: 2. Effect of time and temperature on the decrease in phosphate concentration in the soil so-lution Soil Sci 119 167177 10.1097/00010694-197502000-00010.CrossRefGoogle Scholar
Borggaard, O., 1983 The influence of iron oxides on phosphate adsorption by soil J. Soil Sci 34 333341 10.1111/j.1365-2389.1983.tb01039.x.CrossRefGoogle Scholar
Borggaard, O., 1983 Effect of surface area and mineralogy of iron on their surface charge and anion-adsorption properties Clays & Clay Minerals 31 230232 10.1346/CCMN.1983.0310309.CrossRefGoogle Scholar
Cabrera, F., de Arambarri, P., Madrid, L. and Toca, C. G., 1981 Desorption of phosphate from iron oxides in re-lation to equilibrium pH and porosity Geoderma 26 203216 10.1016/0016-7061(81)90016-1.CrossRefGoogle Scholar
Carter, D. L., Heilman, M. D. and Gonzales, C. L., 1965 The ethylene glycol monoethyl ether (EGME) technique for determining soil-surface area Soil Sci 100 409413 10.1097/00010694-196511000-00011.CrossRefGoogle Scholar
Gregg, S. J. and Sing, K. S. W., 1982 Adsorption, Surface Area and Porosity 2nd ed. London Academic Press.Google Scholar
Hallmark, C. T., Wilding, L. P., Smeck, N. E. and Page, A. L., 1982 Silicon Methods of Soil Analysis, Part 2, Agronomy 9 Madison, Wisconsin Am. Soc. Agron. 263273.Google Scholar
Hingston, F. J., Anderson, M. A. and Rubin, A. J., 1981 A review of anion adsorption Adsorption of Inorganics at Solid-liquid Interfaces Michigan Ann Arbor Science, Ann Arbor 5190.Google Scholar
Jonasson, R. G., Martin, R. R., Giuliacci, M. E. and Tazaki, K., 1988 Surface reactions of goethite with phosphate J. Chem. Soc. Faraday Trans. 1 84 23112315 10.1039/f19888402311.CrossRefGoogle Scholar
Madrid, L. and de Arambarri, P., 1985 Adsorption of phosphate by two iron oxides in relation to their porosity J. Soil Sci 26 523530 10.1111/j.1365-2389.1985.tb00355.x.CrossRefGoogle Scholar
Mann, S., Cornell, R. M. and Schwertmann, U., 1985 The influence of aluminium on iron oxides: XII. High-resolution transmission electron microscopic (HRTEM) study of aluminous goethites Clay Miner 20 255262 10.1180/claymin.1985.020.2.09.CrossRefGoogle Scholar
Martin, R. R., Smart, R. St. C. and Tazaki, K., 1988 Direct observation of precipitation in the goethite/phosphate system Soil Sci. Soc. Amer. J 52 14921500 10.2136/sssaj1988.03615995005200050054x.CrossRefGoogle Scholar
Mehra, O. P., Jackson, M. L. and Swineford, A., 1960 Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate Clays and Clay Minerals, Proc. 7th Natl. Conf., Washington, D.C., 1958 New York Pergamon Press 317327.Google Scholar
Murphy, J. and Riley, J. P., 1962 A modified single solution method for the determination of phosphate in natural waters Anal. Chim. Acta 27 3136 10.1016/S0003-2670(00)88444-5.CrossRefGoogle Scholar
Norrish, K. and Rosser, H., 1983 Mineral phosphate Soils: An Australian Viewpoint London CSIRO: Melbourne/Academic Press.Google Scholar
Parfitt, R. L., 1978 Anion adsorption by soils and soil materials Adv. Agron 30 150.Google Scholar
Parfitt, R. L., 1989 Phosphate reactions with natural allophane, ferrihydrite and goethite J. Soil Sci 40 359369 10.1111/j.1365-2389.1989.tb01280.x.CrossRefGoogle Scholar
Peña, F. and Torrent, J., 1984 Relationships between phosphate sorption and iron oxides in Alfisols from a river terrace sequence of Mediterranean Spain Geoderma 33 283296 10.1016/0016-7061(84)90030-2.CrossRefGoogle Scholar
Schwertmann, U., 1964 Differenzierung der Eisenoxide des Bodens durch Extraktion mit Ammoniumoxalat-Lösung Z. Pflanzenernäh. Düng. Bodenk 105 194202 10.1002/jpln.3591050303.CrossRefGoogle Scholar
Schwertmann, U., 1984 The influence of aluminium on iron oxides: IX. Dissolution of Al-goethites in 6 M HCl Clay Miner 19 919 10.1180/claymin.1984.019.1.02.CrossRefGoogle Scholar
Schwertmann, U., Stucki, J. W., Schwertmann, U. and Goodman, B. A., 1988 Some properties of soil and synthetic iron oxides Iron in Soils and Clay Minerals (NA TO Adv. Study Inst., Bad Windsheim, Germany) The Netherlands Reidel, Dordrecht 203250 10.1007/978-94-009-4007-9_9.CrossRefGoogle Scholar
Schwertman, U., Carlson, L. and Murad, E., 1987 Properties of iron oxides in two Finnish lakes in relation to the environment of their formation Clays & Clay Minerals 35 297304 10.1346/CCMN.1987.0350407.CrossRefGoogle Scholar
Schwertmann, U. and Fanning, D. S., 1976 Iron-manganese concretions in hidrosequences of soils in loess in Bavaria Soil Sci. Soc. Amer. J 40 731738 10.2136/sssaj1976.03615995004000050034x.CrossRefGoogle Scholar
Schwertmann, U. and Latham, M., 1986 Properties of iron oxides in some New Caledonia oxisols Geoderma 39 105123 10.1016/0016-7061(86)90070-4.CrossRefGoogle Scholar
Schwertmann, U. and Schieck, E., 1980 Das Verhalten von Phosphat in eisenoxidreichen Kalkgleyen der Münchnener Schotterebene Z. Pflanzenernähr. Bodenkund 143 391401 10.1002/jpln.19801430405.CrossRefGoogle Scholar
Schwertmann, U. and Taylor, R. M., 1972 The influence of silicate on the transformation of lepidocrocite to goethite Clays & Clay Minerals 20 159164 10.1346/CCMN.1972.0200307.CrossRefGoogle Scholar
Smith, K. L. and Eggleton, R. A., 1983 Botryoidal goethite: A transmission electron microscope study Clays & Clay Minerals 31 392396 10.1346/CCMN.1983.0310509.CrossRefGoogle Scholar
Taylor, R. M. and Schwertmann, U., 1974 The association of phosphorus with iron in ferruginous soil concretions Aust. J. Soil Res 12 133145 10.1071/SR9740133.CrossRefGoogle Scholar
Torrent, J., 1991 Activation energy of the slow reaction between phosphate and goethites of different morphology Aust. J. Soil Res 29 6974 10.1071/SR9910069.CrossRefGoogle Scholar
Torrent, J., Barrón, V. and Schwertmann, U., 1990 Phosphate adsorption and desorption by goethites differing in crystal morphology Soil Sci. Soc. Amer. J 54 10071012 10.2136/sssaj1990.03615995005400040012x.CrossRefGoogle Scholar
van der Zee, S E A T M van Riemsdijk, W. H. and Bolt, G. H., 1991 Model for the reaction kinetics of phosphate with oxides and soil Interactions at the Soil Colloid-Soil Solution Interface Dordrecht Kluwer Academic Publishers 205239 10.1007/978-94-017-1909-4_7.Google Scholar
White, R. E. and Tinker, P. B., 1980 Retention and release of phosphate by soils and soil constituents Soils and Agriculture New York Halstead Press 71114.Google Scholar
Willett, I. R., Chartres, C. J. and Nguyen, T. T., 1988 Migration of phosphate into aggregated particles of ferrihydrite J. Soil Sci 39 275282 10.1111/j.1365-2389.1988.tb01214.x.CrossRefGoogle Scholar